These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24437381)

  • 81. Implication for adsorption and degradation of dyes by humic acid: Light driven of environmentally persistent free radicals to activate reactive oxygen species.
    Zhang Y; Yin M; Sun X; Zhao J
    Bioresour Technol; 2020 Jul; 307():123183. PubMed ID: 32217436
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Formation and stabilization of persistent free radicals.
    Dellinger B; Lomnicki S; Khachatryan L; Maskos Z; Hall RW; Adounkpe J; McFerrin C; Truong H
    Proc Combust Inst; 2007 Jan; 31(1):521-528. PubMed ID: 25598747
    [TBL] [Abstract][Full Text] [Related]  

  • 83. In Situ-Formed Phenoxyl Radical on the CuO Surface Triggers Efficient Persulfate Activation for Phenol Degradation.
    Huang M; Han Y; Xiang W; Zhong D; Wang C; Zhou T; Wu X; Mao J
    Environ Sci Technol; 2021 Nov; 55(22):15361-15370. PubMed ID: 34697937
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Exposure to combustion generated environmentally persistent free radicals enhances severity of influenza virus infection.
    Lee GI; Saravia J; You D; Shrestha B; Jaligama S; Hebert VY; Dugas TR; Cormier SA
    Part Fibre Toxicol; 2014 Oct; 11():57. PubMed ID: 25358535
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Role of coke-bounded environmentally persistent free radicals in phenanthrene degradation by hydrogen peroxide.
    Wu L; Zhao S; Zhu K; Shi Y; Nie X; Jia H
    Environ Technol; 2020 Jun; 41(16):2122-2129. PubMed ID: 30522415
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Formation of Environmentally Persistent Free Radicals on α-Al
    Assaf NW; Altarawneh M; Oluwoye I; Radny M; Lomnicki SM; Dlugogorski BZ
    Environ Sci Technol; 2016 Oct; 50(20):11094-11102. PubMed ID: 27611635
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Size-resolved environmentally persistent free radicals in cold region atmosphere: Implications for inhalation exposure risk.
    Jia SM; Wang DQ; Liu LY; Zhang ZF; Ma WL
    J Hazard Mater; 2023 Feb; 443(Pt B):130263. PubMed ID: 36332281
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Formation of chlorinated aromatics in model fly ashes using various copper compounds.
    Takaoka M; Fujimori T; Shiono A; Yamamoto T; Takeda N; Oshita K; Uruga T; Sun Y; Tanaka T
    Chemosphere; 2010 Jun; 80(2):144-9. PubMed ID: 20452643
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The Overlooked Occurrence of Environmentally Persistent Free Radicals in an Area with Low-Rank Coal Burning, Xuanwei, China.
    Wang P; Pan B; Li H; Huang Y; Dong X; Ai F; Liu L; Wu M; Xing B
    Environ Sci Technol; 2018 Feb; 52(3):1054-1061. PubMed ID: 29316392
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Environmental persistent free radicals in diesel engine exhaust particles at different altitudes and engine speeds.
    Wu M; Zhao Z; Zhang P; Wan M; Lei J; Pan B; Xing B
    Sci Total Environ; 2021 Nov; 796():148963. PubMed ID: 34265616
    [TBL] [Abstract][Full Text] [Related]  

  • 91. In Vitro Assessment Reveals the Effects of Environmentally Persistent Free Radicals on the Toxicity of Photoaged Tire Wear Particles.
    Liu Z; Sun Y; Wang J; Li J; Jia H
    Environ Sci Technol; 2022 Feb; 56(3):1664-1674. PubMed ID: 34821505
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds.
    Borrowman CK; Zhou S; Burrow TE; Abbatt JP
    Phys Chem Chem Phys; 2016 Jan; 18(1):205-12. PubMed ID: 26603953
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Detection and characterisation of radicals in biological materials using EPR methodology.
    Hawkins CL; Davies MJ
    Biochim Biophys Acta; 2014 Feb; 1840(2):708-21. PubMed ID: 23567797
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review.
    Ruan X; Sun Y; Du W; Tang Y; Liu Q; Zhang Z; Doherty W; Frost RL; Qian G; Tsang DCW
    Bioresour Technol; 2019 Jun; 281():457-468. PubMed ID: 30827730
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Characteristics of titania supported copper oxide catalysts for wet air oxidation of phenol.
    Kim KH; Ihm SK
    J Hazard Mater; 2007 Jul; 146(3):610-6. PubMed ID: 17513049
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs.
    Balakrishna S; Saravia J; Thevenot P; Ahlert T; Lominiki S; Dellinger B; Cormier SA
    Part Fibre Toxicol; 2011 Mar; 8():11. PubMed ID: 21388553
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria.
    Zhang Y; Guo X; Si X; Yang R; Zhou J; Quan X
    Sci Total Environ; 2019 Oct; 687():348-354. PubMed ID: 31207524
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Mechanisms for light-driven evolution of environmentally persistent free radicals and photolytic degradation of PAHs on Fe(III)-montmorillonite surface.
    Jia H; Zhao S; Shi Y; Zhu K; Gao P; Zhu L
    J Hazard Mater; 2019 Jan; 362():92-98. PubMed ID: 30236946
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol.
    Potter PM; Guan X; Lomnicki SM
    Chemosphere; 2018 Jul; 203():96-103. PubMed ID: 29614415
    [TBL] [Abstract][Full Text] [Related]  

  • 100. CuO and TiO
    Zhao Z; Wu M; Zhou D; Chen Q; Li H; Lang D; Pan B; Xing B
    Sci Total Environ; 2021 Jun; 775():145555. PubMed ID: 33631563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.