These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24437522)

  • 1. Quality matters: extension of clusters of residues with good hydrophobic contacts stabilize (hyper)thermophilic proteins.
    Rathi PC; Höffken HW; Gohlke H
    J Chem Inf Model; 2014 Feb; 54(2):355-61. PubMed ID: 24437522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic environment is a key factor for the stability of thermophilic proteins.
    Gromiha MM; Pathak MC; Saraboji K; Ortlund EA; Gaucher EA
    Proteins; 2013 Apr; 81(4):715-21. PubMed ID: 23319168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in thermal structural changes and melting between mesophilic and thermophilic dihydrofolate reductase enzymes.
    Maffucci I; Laage D; Stirnemann G; Sterpone F
    Phys Chem Chem Phys; 2020 Sep; 22(33):18361-18373. PubMed ID: 32789320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Hot cores" in proteins: comparative analysis of the apolar contact area in structures from hyper/thermophilic and mesophilic organisms.
    Paiardini A; Sali R; Bossa F; Pascarella S
    BMC Struct Biol; 2008 Feb; 8():14. PubMed ID: 18312638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of main chain and side chain atoms and their locations to the stability of thermophilic proteins.
    Tompa DR; Gromiha MM; Saraboji K
    J Mol Graph Model; 2016 Mar; 64():85-93. PubMed ID: 26811870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein dynamics and stability: the distribution of atomic fluctuations in thermophilic and mesophilic dihydrofolate reductase derived using elastic incoherent neutron scattering.
    Meinhold L; Clement D; Tehei M; Daniel R; Finney JL; Smith JC
    Biophys J; 2008 Jun; 94(12):4812-8. PubMed ID: 18310248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges.
    Panja AS; Bandopadhyay B; Maiti S
    PLoS One; 2015; 10(7):e0131495. PubMed ID: 26177372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Important inter-residue contacts for enhancing the thermal stability of thermophilic proteins.
    Gromiha MM
    Biophys Chem; 2001 Jun; 91(1):71-7. PubMed ID: 11403885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turning a mesophilic protein into a thermophilic one: a computational approach based on 3D structural features.
    Basu S; Sen S
    J Chem Inf Model; 2009 Jul; 49(7):1741-50. PubMed ID: 19586011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus.
    Wallon G; Kryger G; Lovett ST; Oshima T; Ringe D; Petsko GA
    J Mol Biol; 1997 Mar; 266(5):1016-31. PubMed ID: 9086278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different reaction mechanisms for mesophilic and thermophilic dihydrofolate reductases.
    Loveridge EJ; Behiry EM; Swanwick RS; Allemann RK
    J Am Chem Soc; 2009 May; 131(20):6926-7. PubMed ID: 19419144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering proteins for thermostability through rigidifying flexible sites.
    Yu H; Huang H
    Biotechnol Adv; 2014; 32(2):308-15. PubMed ID: 24211474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The thermostability of DNA-binding protein HU from mesophilic, thermophilic, and extreme thermophilic bacteria.
    Christodoulou E; Vorgias CE
    Extremophiles; 2002 Feb; 6(1):21-31. PubMed ID: 11878558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling effects of distal loops on structural stability and enzymatic activity of Escherichia coli dihydrofolate reductase revealed by deletion mutants.
    Horiuchi Y; Ohmae E; Tate S; Gekko K
    Biochim Biophys Acta; 2010 Apr; 1804(4):846-55. PubMed ID: 20045086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of point mutations in a hinge region on the stability, folding, and enzymatic activity of Escherichia coli dihydrofolate reductase.
    Ahrweiler PM; Frieden C
    Biochemistry; 1991 Aug; 30(31):7801-9. PubMed ID: 1868058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.
    Sammond DW; Kastelowitz N; Himmel ME; Yin H; Crowley MF; Bomble YJ
    PLoS One; 2016; 11(1):e0145848. PubMed ID: 26741367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of thermophilic and mesophilic proteins.
    Taylor TJ; Vaisman II
    BMC Struct Biol; 2010 May; 10 Suppl 1(Suppl 1):S5. PubMed ID: 20487512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble.
    Pan H; Lee JC; Hilser VJ
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):12020-5. PubMed ID: 11035796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mirror image mutations reveal the significance of an intersubunit ion cluster in the stability of 3-isopropylmalate dehydrogenase.
    Németh A; Svingor A; Pócsik M; Dobó J; Magyar C; Szilágyi A; Gál P; Závodszky P
    FEBS Lett; 2000 Feb; 468(1):48-52. PubMed ID: 10683439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation of Escherichia coli dihydrofolate reductase and its protein fragments: relative stabilities in experiment and simulations.
    Sham YY; Ma B; Tsai CJ; Nussinov R
    Protein Sci; 2001 Jan; 10(1):135-48. PubMed ID: 11266602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.