These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 2443765)

  • 1. Translation rate modification by preferential codon usage: intragenic position effects.
    Liljenström H; von Heijne G
    J Theor Biol; 1987 Jan; 124(1):43-55. PubMed ID: 2443765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Synthesis in E. coli: Dependence of Codon-Specific Elongation on tRNA Concentration and Codon Usage.
    Rudorf S; Lipowsky R
    PLoS One; 2015; 10(8):e0134994. PubMed ID: 26270805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosome-mediated translational pause and protein domain organization.
    Thanaraj TA; Argos P
    Protein Sci; 1996 Aug; 5(8):1594-612. PubMed ID: 8844849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Codon usage and modular interactions between messenger RNA coding regions and small RNAs in Escherichia coli.
    Tello M; Avalos F; Orellana O
    BMC Genomics; 2018 Sep; 19(1):657. PubMed ID: 30189833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system.
    Rosenberg AH; Goldman E; Dunn JJ; Studier FW; Zubay G
    J Bacteriol; 1993 Feb; 175(3):716-22. PubMed ID: 7678594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Codon influence on protein expression in E. coli correlates with mRNA levels.
    Boël G; Letso R; Neely H; Price WN; Wong KH; Su M; Luff J; Valecha M; Everett JK; Acton TB; Xiao R; Montelione GT; Aalberts DP; Hunt JF
    Nature; 2016 Jan; 529(7586):358-363. PubMed ID: 26760206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of ribosome bound nascent polypeptides in vitro to identify translational pause sites along mRNA.
    Jha SS; Komar AA
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics.
    Choi J; Ieong KW; Demirci H; Chen J; Petrov A; Prabhakar A; O'Leary SE; Dominissini D; Rechavi G; Soltis SM; Ehrenberg M; Puglisi JD
    Nat Struct Mol Biol; 2016 Feb; 23(2):110-5. PubMed ID: 26751643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient translation initiation dictates codon usage at gene start.
    Bentele K; Saffert P; Rauscher R; Ignatova Z; Blüthgen N
    Mol Syst Biol; 2013 Jun; 9():675. PubMed ID: 23774758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate.
    Gorochowski TE; Ignatova Z; Bovenberg RA; Roubos JA
    Nucleic Acids Res; 2015 Mar; 43(6):3022-32. PubMed ID: 25765653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Translation within the First 45 Codons Decreases mRNA Stability and Increases Premature Transcription Termination in E. coli.
    Pedersen S; Terkelsen TB; Eriksen M; Hauge MK; Lund CC; Sneppen K; Mitarai N
    J Mol Biol; 2019 Mar; 431(6):1088-1097. PubMed ID: 30690030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case for the genetic code as a triplet of triplets.
    Chevance FFV; Hughes KT
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4745-4750. PubMed ID: 28416671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translation of mRNAs with degenerate initiation triplet AUU displays high initiation factor 2 dependence and is subject to initiation factor 3 repression.
    La Teana A; Pon CL; Gualerzi CO
    Proc Natl Acad Sci U S A; 1993 May; 90(9):4161-5. PubMed ID: 8483930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective charging of tRNA isoacceptors explains patterns of codon usage.
    Elf J; Nilsson D; Tenson T; Ehrenberg M
    Science; 2003 Jun; 300(5626):1718-22. PubMed ID: 12805541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consecutive low-usage leucine codons block translation only when near the 5' end of a message in Escherichia coli.
    Goldman E; Rosenberg AH; Zubay G; Studier FW
    J Mol Biol; 1995 Feb; 245(5):467-73. PubMed ID: 7844820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coevolution of codon usage and transfer RNA abundance.
    Bulmer M
    Nature; 1987 Feb 19-25; 325(6106):728-30. PubMed ID: 2434856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of codon adaptation on codon-level and gene-level translation efficiency in vivo.
    Nakahigashi K; Takai Y; Shiwa Y; Wada M; Honma M; Yoshikawa H; Tomita M; Kanai A; Mori H
    BMC Genomics; 2014 Dec; 15(1):1115. PubMed ID: 25512115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes.
    Grosjean H; Fiers W
    Gene; 1982 Jun; 18(3):199-209. PubMed ID: 6751939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Codon usage in bacteria: correlation with gene expressivity.
    Gouy M; Gautier C
    Nucleic Acids Res; 1982 Nov; 10(22):7055-74. PubMed ID: 6760125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.