These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 24437768)

  • 1. Updated parameters and expanded simulation options for a model of the auditory periphery.
    Zilany MS; Bruce IC; Carney LH
    J Acoust Soc Am; 2014 Jan; 135(1):283-6. PubMed ID: 24437768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites.
    Bruce IC; Erfani Y; Zilany MSA
    Hear Res; 2018 Mar; 360():40-54. PubMed ID: 29395616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
    Peterson AJ; Heil P
    Hear Res; 2018 Jun; 363():1-27. PubMed ID: 28987786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of cochlear processing for the formation of auditory brainstem and frequency following responses.
    Dau T
    J Acoust Soc Am; 2003 Feb; 113(2):936-50. PubMed ID: 12597187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide.
    Tan Q; Carney LH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2007-20. PubMed ID: 14587601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Locking of Auditory Nerve Fibers: The Role of Lowpass Filtering by Hair Cells.
    Peterson AJ; Heil P
    J Neurosci; 2020 Jun; 40(24):4700-4714. PubMed ID: 32376778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochlear processes reflected in responses of the cochlear nerve.
    Smith RL
    Acta Otolaryngol; 1985; 100(1-2):1-12. PubMed ID: 2992224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of models for the synapse between the inner hair cell and the auditory nerve.
    Zhang X; Carney LH
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1540-53. PubMed ID: 16240815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling auditory evoked brainstem responses to transient stimuli.
    Rønne FM; Dau T; Harte J; Elberling C
    J Acoust Soc Am; 2012 May; 131(5):3903-13. PubMed ID: 22559366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation in a revised inner-hair cell model.
    Sumner CJ; Lopez-Poveda EA; O'Mard LP; Meddis R
    J Acoust Soc Am; 2003 Feb; 113(2):893-901. PubMed ID: 12597183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representation of the vowel /epsilon/ in normal and impaired auditory nerve fibers: model predictions of responses in cats.
    Zilany MS; Bruce IC
    J Acoust Soc Am; 2007 Jul; 122(1):402-17. PubMed ID: 17614499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational model of the auditory periphery for speech and hearing research. I. Ascending path.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):331-42. PubMed ID: 8120244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computer model of medial efferent suppression in the mammalian auditory system.
    Ferry RT; Meddis R
    J Acoust Soc Am; 2007 Dec; 122(6):3519-26. PubMed ID: 18247760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses.
    Bruce IC; Sachs MB; Young ED
    J Acoust Soc Am; 2003 Jan; 113(1):369-88. PubMed ID: 12558276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refractoriness enhances temporal coding by auditory nerve fibers.
    Avissar M; Wittig JH; Saunders JC; Parsons TD
    J Neurosci; 2013 May; 33(18):7681-90. PubMed ID: 23637161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encoding of amplitude modulation in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of auditory nerve fibers to harmonic and mistuned complex tones.
    Sinex DG; Guzik H; Li H; Henderson Sabes J
    Hear Res; 2003 Aug; 182(1-2):130-9. PubMed ID: 12948608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encoding timing and intensity in the ventral cochlear nucleus of the cat.
    Rhode WS; Smith PH
    J Neurophysiol; 1986 Aug; 56(2):261-86. PubMed ID: 3760921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for discharge patterns of primary auditory-nerve fibers.
    Geisler CD
    Brain Res; 1981 May; 212(1):198-201. PubMed ID: 6112046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.