These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24437890)

  • 1. Turing-Hopf instabilities through a combination of diffusion, advection, and finite size effects.
    Galhotra S; Bhattacharjee JK; Agarwalla BK
    J Chem Phys; 2014 Jan; 140(2):024501. PubMed ID: 24437890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system.
    Just W; Bose M; Bose S; Engel H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026219. PubMed ID: 11497689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing similar patterns with different underlying instabilities: effect of advection on systems with Hopf, Turing-Hopf, and wave instabilities.
    Berenstein I
    Chaos; 2012 Dec; 22(4):043109. PubMed ID: 23278044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic and entropic cost due to overlapping of Turing-Hopf instabilities in the presence of cross diffusion.
    Kumar P; Gangopadhyay G
    Phys Rev E; 2020 Apr; 101(4-1):042204. PubMed ID: 32422772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplitude equations for reaction-diffusion systems with cross diffusion.
    Zemskov EP; Vanag VK; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036216. PubMed ID: 22060484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principal bifurcations and symmetries in the emergence of reaction-diffusion-advection patterns on finite domains.
    Yochelis A; Sheintuch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056201. PubMed ID: 20365054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal chaos stimulated by transverse Hopf instabilities in an optical bilayer system.
    Paulau PV; Babushkin IV; Loiko NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046222. PubMed ID: 15600510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay.
    Bin H; Duan D; Wei J
    Math Biosci Eng; 2023 May; 20(7):12194-12210. PubMed ID: 37501439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern formation in an N+Q component reaction-diffusion system.
    Pearson JE; Bruno WJ
    Chaos; 1992 Oct; 2(4):513-524. PubMed ID: 12780000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatio-temporal secondary instabilities near the Turing-Hopf bifurcation.
    Ledesma-Durán A; Aragón JL
    Sci Rep; 2019 Aug; 9(1):11287. PubMed ID: 31375714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turing-Hopf instability in biochemical reaction networks arising from pairs of subnetworks.
    Mincheva M; Roussel MR
    Math Biosci; 2012 Nov; 240(1):1-11. PubMed ID: 22698892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model.
    Banerjee M; Banerjee S
    Math Biosci; 2012 Mar; 236(1):64-76. PubMed ID: 22207074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the Hopf-Turing transition by time-delayed global feedback in a reaction-diffusion system.
    Ghosh P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016222. PubMed ID: 21867288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifurcation and patterns induced by flow in a prey-predator system with Beddington-DeAngelis functional response.
    Dai C; Zhao M
    Phys Rev E; 2020 Jul; 102(1-1):012209. PubMed ID: 32794984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations.
    Baurmann M; Gross T; Feudel U
    J Theor Biol; 2007 Mar; 245(2):220-9. PubMed ID: 17140604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite wavelength instabilities in a slow mode coupled complex ginzburg-landau equation.
    Ipsen M; Sorensen PG
    Phys Rev Lett; 2000 Mar; 84(11):2389-92. PubMed ID: 11018892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations.
    Halloy J; Sonnino G; Coullet P
    Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-delay-induced instabilities in reaction-diffusion systems.
    Sen S; Ghosh P; Riaz SS; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046212. PubMed ID: 19905420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forced patterns near a Turing-Hopf bifurcation.
    Topaz CM; Catllá AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026213. PubMed ID: 20365644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why Turing mechanism is an obstacle to stationary periodic patterns in bounded reaction-diffusion media with advection.
    Yochelis A; Sheintuch M
    Phys Chem Chem Phys; 2010 Apr; 12(16):3957-60. PubMed ID: 20379487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.