These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 24437890)
21. Stability and bifurcation analysis of a heroin model with diffusion, delay and nonlinear incidence rate. Kundu S; Kumari N; Kouachi S; Kundu P Model Earth Syst Environ; 2022; 8(1):1351-1362. PubMed ID: 33898735 [TBL] [Abstract][Full Text] [Related]
22. Comb-like Turing patterns embedded in Hopf oscillations: Spatially localized states outside the 2:1 frequency locked region. Castillero PM; Yochelis A Chaos; 2017 Apr; 27(4):043110. PubMed ID: 28456181 [TBL] [Abstract][Full Text] [Related]
23. Singular diffusionless limits of double-diffusive instabilities in magnetohydrodynamics. Kirillov ON Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170344. PubMed ID: 28989309 [TBL] [Abstract][Full Text] [Related]
24. Bifurcation analysis for a single population model with advection. Zhang H; Wei J J Math Biol; 2022 Oct; 85(6-7):61. PubMed ID: 36305980 [TBL] [Abstract][Full Text] [Related]
25. Emergent structures in reaction-advection-diffusion systems on a sphere. Krause AL; Burton AM; Fadai NT; Van Gorder RA Phys Rev E; 2018 Apr; 97(4-1):042215. PubMed ID: 29758621 [TBL] [Abstract][Full Text] [Related]
26. Chemical pattern formation induced by a shear flow in a two-layer model. Vasquez DA; Meyer J; Suedhoff H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036109. PubMed ID: 18851107 [TBL] [Abstract][Full Text] [Related]
27. Towards nonlinear selection of reaction-diffusion patterns in presence of advection: a spatial dynamics approach. Yochelis A; Sheintuch M Phys Chem Chem Phys; 2009 Oct; 11(40):9210-23. PubMed ID: 19812842 [TBL] [Abstract][Full Text] [Related]
28. Spatial instabilities in reaction random walks with direction-independent kinetics. Horsthemke W Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2651-63. PubMed ID: 11970066 [TBL] [Abstract][Full Text] [Related]
29. Localized stationary and traveling reaction-diffusion patterns in a two-layer A+B→ oscillator system. Budroni MA; De Wit A Phys Rev E; 2016 Jun; 93(6):062207. PubMed ID: 27415255 [TBL] [Abstract][Full Text] [Related]
31. Harmonic resonant excitation of flow-distributed oscillation waves and Turing patterns driven at a growing boundary. McGraw PN; Menzinger M; Muñuzuri AP Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026209. PubMed ID: 19792233 [TBL] [Abstract][Full Text] [Related]
32. Analysis of dynamic properties on forest restoration-population pressure model. Qu MZ; Zhang CR; Wang XJ Math Biosci Eng; 2020 May; 17(4):3567-3581. PubMed ID: 32987544 [TBL] [Abstract][Full Text] [Related]
33. Coupling Turing stripes to active flows. Bhattacharyya S; Yeomans JM Soft Matter; 2021 Dec; 17(47):10716-10722. PubMed ID: 34783817 [TBL] [Abstract][Full Text] [Related]
34. Bifurcation analysis of a normal form for excitable media: are stable dynamical alternans on a ring possible? Gottwald GA Chaos; 2008 Mar; 18(1):013129. PubMed ID: 18377080 [TBL] [Abstract][Full Text] [Related]
35. Noise-induced precursors of state transitions in the stochastic Wilson-cowan model. Negahbani E; Steyn-Ross DA; Steyn-Ross ML; Wilson MT; Sleigh JW J Math Neurosci; 2015; 5():9. PubMed ID: 25859420 [TBL] [Abstract][Full Text] [Related]
36. Diffusive instability in hyperbolic reaction-diffusion equation with different inertia. Ghorai S; Poria S; Bairagi N Chaos; 2022 Jan; 32(1):013101. PubMed ID: 35105144 [TBL] [Abstract][Full Text] [Related]
37. Existence of complex patterns in the Beddington-DeAngelis predator-prey model. Haque M Math Biosci; 2012 Oct; 239(2):179-90. PubMed ID: 22659347 [TBL] [Abstract][Full Text] [Related]
38. Control of degenerate Hopf bifurcations in three-dimensional maps. Wen G; Xu D; Xie J Chaos; 2003 Jun; 13(2):486-94. PubMed ID: 12777111 [TBL] [Abstract][Full Text] [Related]
39. A graph-theoretic method for detecting potential Turing bifurcations. Mincheva M; Roussel MR J Chem Phys; 2006 Nov; 125(20):204102. PubMed ID: 17144685 [TBL] [Abstract][Full Text] [Related]
40. Out-of-phase oscillatory Turing patterns in a bistable reaction-diffusion system. Vanag VK; Epstein IR Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066212. PubMed ID: 16089854 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]