These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 24437917)
1. Kinks, loops, and protein folding, with protein A as an example. Krokhotin A; Liwo A; Maisuradze GG; Niemi AJ; Scheraga HA J Chem Phys; 2014 Jan; 140(2):025101. PubMed ID: 24437917 [TBL] [Abstract][Full Text] [Related]
2. Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field. Maisuradze GG; Senet P; Czaplewski C; Liwo A; Scheraga HA J Phys Chem A; 2010 Apr; 114(13):4471-85. PubMed ID: 20166738 [TBL] [Abstract][Full Text] [Related]
3. Investigation of Phosphorylation-Induced Folding of an Intrinsically Disordered Protein by Coarse-Grained Molecular Dynamics. Sieradzan AK; Korneev A; Begun A; Kachlishvili K; Scheraga HA; Molochkov A; Senet P; Niemi AJ; Maisuradze GG J Chem Theory Comput; 2021 May; 17(5):3203-3220. PubMed ID: 33909430 [TBL] [Abstract][Full Text] [Related]
4. Kinetic studies of folding of the B-domain of staphylococcal protein A with molecular dynamics and a united-residue (UNRES) model of polypeptide chains. Khalili M; Liwo A; Scheraga HA J Mol Biol; 2006 Jan; 355(3):536-47. PubMed ID: 16324712 [TBL] [Abstract][Full Text] [Related]
5. Peierls-Nabarro barrier and protein loop propagation. Sieradzan AK; Niemi A; Peng X Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062717. PubMed ID: 25615139 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics with the united-residue model of polypeptide chains. II. Langevin and Berendsen-bath dynamics and tests on model alpha-helical systems. Khalili M; Liwo A; Jagielska A; Scheraga HA J Phys Chem B; 2005 Jul; 109(28):13798-810. PubMed ID: 16852728 [TBL] [Abstract][Full Text] [Related]
7. Revised Backbone-Virtual-Bond-Angle Potentials to Treat the l- and d-Amino Acid Residues in the Coarse-Grained United Residue (UNRES) Force Field. Sieradzan AK; Niadzvedtski A; Scheraga HA; Liwo A J Chem Theory Comput; 2014 May; 10(5):2194-2203. PubMed ID: 24839411 [TBL] [Abstract][Full Text] [Related]
8. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone. Murarka RK; Liwo A; Scheraga HA J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219 [TBL] [Abstract][Full Text] [Related]
9. New Insights into Folding, Misfolding, and Nonfolding Dynamics of a WW Domain. Kachlishvili K; Korneev A; Maisuradze L; Liu J; Scheraga HA; Molochkov A; Senet P; Niemi AJ; Maisuradze GG J Phys Chem B; 2020 May; 124(19):3855-3872. PubMed ID: 32271570 [TBL] [Abstract][Full Text] [Related]
10. Bloch spin waves and emergent structure in protein folding with HIV envelope glycoprotein as an example. Dai J; Niemi AJ; He J; Sieradzan A; Ilieva N Phys Rev E; 2016 Mar; 93(3):032409. PubMed ID: 27078392 [TBL] [Abstract][Full Text] [Related]
11. Statistical analyses and computational prediction of helical kinks in membrane proteins. Huang YH; Chen CM J Comput Aided Mol Des; 2012 Oct; 26(10):1171-85. PubMed ID: 22996198 [TBL] [Abstract][Full Text] [Related]
12. Improved helix and kink characterization in membrane proteins allows evaluation of kink sequence predictors. Langelaan DN; Wieczorek M; Blouin C; Rainey JK J Chem Inf Model; 2010 Dec; 50(12):2213-20. PubMed ID: 21090591 [TBL] [Abstract][Full Text] [Related]
13. Coarse-grained force field: general folding theory. Liwo A; He Y; Scheraga HA Phys Chem Chem Phys; 2011 Oct; 13(38):16890-901. PubMed ID: 21643583 [TBL] [Abstract][Full Text] [Related]
14. Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction. Hall SE; Roberts K; Vaidehi N J Mol Graph Model; 2009; 27(8):944-50. PubMed ID: 19285892 [TBL] [Abstract][Full Text] [Related]
15. Physics-based potentials for the coupling between backbone- and side-chain-local conformational states in the UNited RESidue (UNRES) force field for protein simulations. Sieradzan AK; Krupa P; Scheraga HA; Liwo A; Czaplewski C J Chem Theory Comput; 2015 Feb; 11(2):817-31. PubMed ID: 25691834 [TBL] [Abstract][Full Text] [Related]
16. Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations. Lei H; Wu C; Wang ZX; Zhou Y; Duan Y J Chem Phys; 2008 Jun; 128(23):235105. PubMed ID: 18570534 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics of protein A and a WW domain with a united-residue model including hydrodynamic interaction. Lipska AG; Seidman SR; Sieradzan AK; Giełdoń A; Liwo A; Scheraga HA J Chem Phys; 2016 May; 144(18):184110. PubMed ID: 27179474 [TBL] [Abstract][Full Text] [Related]
18. Accounting for a mirror-image conformation as a subtle effect in protein folding. Kachlishvili K; Maisuradze GG; Martin OA; Liwo A; Vila JA; Scheraga HA Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8458-63. PubMed ID: 24912167 [TBL] [Abstract][Full Text] [Related]
19. The relative helix and hydrogen bond stability in the B domain of protein A as revealed by integrated tempering sampling molecular dynamics simulation. Shao Q; Gao YQ J Chem Phys; 2011 Oct; 135(13):135102. PubMed ID: 21992340 [TBL] [Abstract][Full Text] [Related]
20. Coarse-grained protein model with residue orientation energies derived from atomic force fields. Betancourt MR J Phys Chem B; 2009 Nov; 113(44):14824-30. PubMed ID: 19817469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]