These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24438364)

  • 21. Interaction and localization diversities of global and local hubs in human protein-protein interaction networks.
    Kiran M; Nagarajaram HA
    Mol Biosyst; 2016 Aug; 12(9):2875-82. PubMed ID: 27400769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular basis for evolving modularity in the yeast protein interaction network.
    Fernández A
    PLoS Comput Biol; 2007 Nov; 3(11):e226. PubMed ID: 17997598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying protein complexes from interaction networks based on clique percolation and distance restriction.
    Wang J; Liu B; Li M; Pan Y
    BMC Genomics; 2010 Nov; 11 Suppl 2(Suppl 2):S10. PubMed ID: 21047377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization the regulation of herpesvirus miRNAs from the view of human protein interaction network.
    Li Z; Li F; Ni M; Li P; Bo X; Wang S
    BMC Syst Biol; 2011 Jun; 5():93. PubMed ID: 21668952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modification of gene duplicability during the evolution of protein interaction network.
    D'Antonio M; Ciccarelli FD
    PLoS Comput Biol; 2011 Apr; 7(4):e1002029. PubMed ID: 21490719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional enrichment analyses and construction of functional similarity networks with high confidence function prediction by PFP.
    Hawkins T; Chitale M; Kihara D
    BMC Bioinformatics; 2010 May; 11():265. PubMed ID: 20482861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying the overlapping complexes in protein interaction networks.
    Li M; Wang J; Chen J; Cai Z; Chen G
    Int J Data Min Bioinform; 2010; 4(1):91-108. PubMed ID: 20376924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel subgradient-based optimization algorithm for blockmodel functional module identification.
    Wang Y; Qian X
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S23. PubMed ID: 23368964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks.
    Kirouac DC; Saez-Rodriguez J; Swantek J; Burke JM; Lauffenburger DA; Sorger PK
    BMC Syst Biol; 2012 May; 6():29. PubMed ID: 22548703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finding the "dark matter" in human and yeast protein network prediction and modelling.
    Ranea JA; Morilla I; Lees JG; Reid AJ; Yeats C; Clegg AB; Sanchez-Jimenez F; Orengo C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20885791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of degree frequency distribution in protein interaction networks.
    Romano SA; Eguia MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031901. PubMed ID: 15903453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of protein interaction types based on sequence and network features.
    Goebels F; Frishman D
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S5. PubMed ID: 24564924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competition-cooperation relationship networks characterize the competition and cooperation between proteins.
    Li H; Zhou Y; Zhang Z
    Sci Rep; 2015 Jun; 5():11619. PubMed ID: 26108281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topological properties of protein-protein and metabolic interaction networks of Drosophila melanogaster.
    Rajarathinam T; Lin YH
    Genomics Proteomics Bioinformatics; 2006 May; 4(2):80-9. PubMed ID: 16970548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS.
    Rodgers-Melnick E; Culp M; DiFazio SP
    BMC Genomics; 2013 Sep; 14():608. PubMed ID: 24015873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resilience of protein-protein interaction networks as determined by their large-scale topological features.
    Rodrigues FA; Costa Lda F; Barbieri AL
    Mol Biosyst; 2011 Apr; 7(4):1263-9. PubMed ID: 21298132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-expression networks: graph properties and topological comparisons.
    Xulvi-Brunet R; Li H
    Bioinformatics; 2010 Jan; 26(2):205-14. PubMed ID: 19910304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualization and analysis of the complexome network of Saccharomyces cerevisiae.
    Li SS; Xu K; Wilkins MR
    J Proteome Res; 2011 Oct; 10(10):4744-56. PubMed ID: 21842913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X; Yang Z; Sang S; Zhou Z; Wang L; Zhang Y; Lin H; Wang J; Xu B
    BMC Bioinformatics; 2018 Sep; 19(1):332. PubMed ID: 30241459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.