BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24438532)

  • 1. High-throughput, high-content screening for novel pigmentation regulators using a keratinocyte/melanocyte co-culture system.
    Lee JH; Chen H; Kolev V; Aull KH; Jung I; Wang J; Miyamoto S; Hosoi J; Mandinova A; Fisher DE
    Exp Dermatol; 2014 Feb; 23(2):125-9. PubMed ID: 24438532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel (1
    Oh J; Kim J; Jang JH; Lee S; Park CM; Kim WK; Kim JS
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29614034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-culture of mouse epidermal cells for studies of pigmentation.
    Yoon TJ; Hearing VJ
    Pigment Cell Res; 2003 Apr; 16(2):159-63. PubMed ID: 12622793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MITF-M regulates melanogenesis in mouse melanocytes.
    Chen T; Zhao B; Liu Y; Wang R; Yang Y; Yang L; Dong C
    J Dermatol Sci; 2018 Jun; 90(3):253-262. PubMed ID: 29496358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NDRG2 gene expression in B16F10 melanoma cells restrains melanogenesis via inhibition of Mitf expression.
    Kim A; Yang Y; Lee MS; Yoo YD; Lee HG; Lim JS
    Pigment Cell Melanoma Res; 2008 Dec; 21(6):653-64. PubMed ID: 19067970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative changes in the secretion of exosomes from keratinocytes homeostatically regulate skin pigmentation in a paracrine manner.
    Takano K; Hachiya A; Murase D; Tanabe H; Kasamatsu S; Takahashi Y; Moriwaki S; Hase T
    J Dermatol; 2020 Mar; 47(3):265-276. PubMed ID: 31916286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoliquiritigenin inhibits melanogenesis, melanocyte dendricity and melanosome transport by regulating ERK-mediated MITF degradation.
    Lv J; Fu Y; Cao Y; Jiang S; Yang Y; Song G; Yun C; Gao R
    Exp Dermatol; 2020 Feb; 29(2):149-157. PubMed ID: 31785162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of xanthohumol on melanogenesis in B16 melanoma cells.
    Koo JH; Kim HT; Yoon HY; Kwon KB; Choi IW; Jung SH; Kim HU; Park BH; Park JW
    Exp Mol Med; 2008 Jun; 40(3):313-9. PubMed ID: 18587269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sulfur mustard on melanogenesis in vitro.
    Müller-Dott K; Thiermann H; Steinritz D; Popp T
    Toxicol Lett; 2020 Feb; 319():197-203. PubMed ID: 31785464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bromodomain and extra-terminal domain (BET) proteins regulate melanocyte differentiation.
    Trivedi A; Mehrotra A; Baum CE; Lewis B; Basuroy T; Blomquist T; Trumbly R; Filipp FV; Setaluri V; de la Serna IL
    Epigenetics Chromatin; 2020 Mar; 13(1):14. PubMed ID: 32151278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of melanocye-keratinocyte co-culture model for controls and vitiligo to assess regulators of pigmentation and melanocytes.
    Kumar R; Parsad D; Kanwar A; Kaul D
    Indian J Dermatol Venereol Leprol; 2012; 78(5):599-604. PubMed ID: 22960816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exosomal miRNA derived from keratinocytes regulates pigmentation in melanocytes.
    Liu Y; Xue L; Gao H; Chang L; Yu X; Zhu Z; He X; Geng J; Dong Y; Li H; Zhang L; Wang H
    J Dermatol Sci; 2019 Mar; 93(3):159-167. PubMed ID: 30904353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of melanogenesis inhibition by propafenone.
    Huh S; Jung E; Lee J; Roh K; Kim JD; Lee J; Park D
    Arch Dermatol Res; 2010 Sep; 302(7):561-5. PubMed ID: 20549222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ov-16 [4-(3,4-dihydroxybenzoyloxymethyl)phenyl-O-β-D-glucopyranoside] inhibits melanin synthesis by regulating expressions of melanogenesis-regulated gene and protein.
    Liang CH
    Exp Dermatol; 2011 Sep; 20(9):743-8. PubMed ID: 21672031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.
    Won YK; Lin CB; Seiberg M; Chen N; Hu Y; Rossetti D; Saliou C; Loy CJ
    Arch Dermatol Res; 2014 Jan; 306(1):27-35. PubMed ID: 23700242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-Cryptoxanthin suppresses UVB-induced melanogenesis in mouse: involvement of the inhibition of prostaglandin E2 and melanocyte-stimulating hormone pathways.
    Shimoda H; Shan SJ; Tanaka J; Maoka T
    J Pharm Pharmacol; 2012 Aug; 64(8):1165-76. PubMed ID: 22775220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparable down-regulation of TYR, TYRP1 and TYRP2 genes and inhibition of melanogenesis by tyrostat, tocotrienol-rich fraction and tocopherol in human skin melanocytes improves skin pigmentation.
    Makpol S; Jam FA; Rahim NA; Khor SC; Ismail Z; Yusof YA; Wan Ngah WZ
    Clin Ter; 2014; 165(1):e39-45. PubMed ID: 24589959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological characteristics of mouse skin melanocytes.
    Shi Z; Ji K; Yang S; Zhang J; Yao J; Dong C; Fan R
    Tissue Cell; 2016 Apr; 48(2):114-20. PubMed ID: 26905193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A melanocyte-keratinocyte coculture model to assess regulators of pigmentation in vitro.
    Lei TC; Virador VM; Vieira WD; Hearing VJ
    Anal Biochem; 2002 Jun; 305(2):260-8. PubMed ID: 12054455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agerarin inhibits α-MSH-induced TYR gene transcription via STAT3 suppression independent of CREB-MITF pathway.
    Shin SY; Gil HN; Choi JH; Lim Y; Lee YH
    J Dermatol Sci; 2018 Jul; 91(1):107-110. PubMed ID: 29625721
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.