These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24439277)

  • 1. Poly(vinyl alcohol)-micropatterned surfaces for manipulation of mesenchymal stem cell functions.
    Chen G
    Methods Cell Biol; 2014; 119():17-33. PubMed ID: 24439277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns.
    Song W; Lu H; Kawazoe N; Chen G
    Langmuir; 2011 May; 27(10):6155-62. PubMed ID: 21486006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The osteogenic differentiation of mesenchymal stem cells by controlled cell-cell interaction on micropatterned surfaces.
    Wang X; Song W; Kawazoe N; Chen G
    J Biomed Mater Res A; 2013 Dec; 101(12):3388-95. PubMed ID: 23554043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds.
    Mohan N; Nair PD; Tabata Y
    J Biomed Mater Res A; 2010 Jul; 94(1):146-59. PubMed ID: 20128001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adipogenic differentiation of mesenchymal stem cells on micropatterned polyelectrolyte surfaces.
    Kawazoe N; Guo L; Wozniak MJ; Imaizumi Y; Tateishi T; Zhang X; Chen G
    J Nanosci Nanotechnol; 2009 Jan; 9(1):230-9. PubMed ID: 19441301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating human mesenchymal stem cell plasticity using micropatterning technique.
    Tijore A; Wen F; Lam CR; Tay CY; Tan LP
    PLoS One; 2014; 9(11):e113043. PubMed ID: 25401734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair of osteochondral defects with a construct of mesenchymal stem cells and a polydioxanone/poly(vinyl alcohol) scaffold.
    Jeong WK; Oh SH; Lee JH; Im GI
    Biotechnol Appl Biochem; 2008 Feb; 49(Pt 2):155-64. PubMed ID: 17919122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bio-inspired platform to modulate myogenic differentiation of human mesenchymal stem cells through focal adhesion regulation.
    Yu H; Tay CY; Pal M; Leong WS; Li H; Li H; Wen F; Leong DT; Tan LP
    Adv Healthc Mater; 2013 Mar; 2(3):442-9. PubMed ID: 23184715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surface molecular chirality on adhesion and differentiation of stem cells.
    Yao X; Hu Y; Cao B; Peng R; Ding J
    Biomaterials; 2013 Dec; 34(36):9001-9. PubMed ID: 23981354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, characterization, differentiation, and application of adipose-derived stem cells.
    Kuhbier JW; Weyand B; Radtke C; Vogt PM; Kasper C; Reimers K
    Adv Biochem Eng Biotechnol; 2010; 123():55-105. PubMed ID: 20091288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of embryonic rat cerebral cortical stem cells on the PVA and EVAL substrates.
    Young TH; Hung CH
    Biomaterials; 2005 Jul; 26(20):4291-9. PubMed ID: 15683653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and myogenic differentiation of mesenchymal stem cells for urologic tissue engineering.
    Wu R; Liu G; Bharadwaj S; Zhang Y
    Methods Mol Biol; 2013; 1001():65-80. PubMed ID: 23494421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A generic micropatterning platform to direct human mesenchymal stem cells from different origins towards myogenic differentiation.
    Yu T; Chua CK; Tay CY; Wen F; Yu H; Chan JK; Chong MS; Leong DT; Tan LP
    Macromol Biosci; 2013 Jun; 13(6):799-807. PubMed ID: 23606448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells.
    Shafiee A; Soleimani M; Chamheidari GA; Seyedjafari E; Dodel M; Atashi A; Gheisari Y
    J Biomed Mater Res A; 2011 Dec; 99(3):467-78. PubMed ID: 21887742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing-thawing method to investigate stem cell differentiation behaviors.
    Kim TH; An DB; Oh SH; Kang MK; Song HH; Lee JH
    Biomaterials; 2015 Feb; 40():51-60. PubMed ID: 25467820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.
    Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S
    Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivation and spontaneous differentiation of rat bone marrow-derived mesenchymal stem cells on polymeric surfaces.
    Xu X; Kratz K; Wang W; Li Z; Roch T; Jung F; Lendlein A; Ma N
    Clin Hemorheol Microcirc; 2013; 55(1):143-56. PubMed ID: 23478225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-β1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects.
    Qi BW; Yu AX; Zhu SB; Zhou M; Wu G
    Exp Biol Med (Maywood); 2013 Jan; 238(1):23-30. PubMed ID: 23479760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of culture conditions on the adipogenic and osteogenic inductions of mesenchymal stem cells on micropatterned surfaces.
    Peng R; Yao X; Cao B; Tang J; Ding J
    Biomaterials; 2012 Sep; 33(26):6008-19. PubMed ID: 22681981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics.
    Vogel JP; Szalay K; Geiger F; Kramer M; Richter W; Kasten P
    Platelets; 2006 Nov; 17(7):462-9. PubMed ID: 17074722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.