These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 24439283)
1. Micropatterning with a liquid crystal display (LCD) projector. Itoga K; Kobayashi J; Yamato M; Okano T Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283 [TBL] [Abstract][Full Text] [Related]
2. Second-generation maskless photolithography device for surface micropatterning and microfluidic channel fabrication. Itoga K; Kobayashi J; Tsuda Y; Yamato M; Okano T Anal Chem; 2008 Feb; 80(4):1323-7. PubMed ID: 18211096 [TBL] [Abstract][Full Text] [Related]
3. Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns. Itoga K; Kobayashi J; Yamato M; Kikuchi A; Okano T Biomaterials; 2006 May; 27(15):3005-9. PubMed ID: 16455135 [TBL] [Abstract][Full Text] [Related]
4. PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels. Kim M; Song KH; Doh J Colloids Surf B Biointerfaces; 2013 Dec; 112():134-8. PubMed ID: 23973671 [TBL] [Abstract][Full Text] [Related]
5. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes. Wang CK; Liao WH; Wu HM; Tung YC J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670 [TBL] [Abstract][Full Text] [Related]
6. Direct projection on dry-film photoresist (DP(2)): do-it-yourself three-dimensional polymer microfluidics. Zhao S; Cong H; Pan T Lab Chip; 2009 Apr; 9(8):1128-32. PubMed ID: 19350095 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications. Mosadegh B; Agarwal M; Torisawa YS; Takayama S Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832 [TBL] [Abstract][Full Text] [Related]
9. Rapid fabrication of microchannels using microscale plasma activated templating (microPLAT) generated water molds. Chao SH; Carlson R; Meldrum DR Lab Chip; 2007 May; 7(5):641-3. PubMed ID: 17476386 [TBL] [Abstract][Full Text] [Related]
10. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices. Ozbolat V; Dey M; Ayan B; Ozbolat IT Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470 [TBL] [Abstract][Full Text] [Related]
11. When microfluidic devices go bad. How does fouling occur in microfluidic devices, and what can be done about it? Mukhopadhyay R Anal Chem; 2005 Nov; 77(21):429A-432A. PubMed ID: 16285143 [No Abstract] [Full Text] [Related]
12. Complex micropatterning of proteins within microfluidic channels. Kim M; Doh J Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():782-5. PubMed ID: 25570075 [TBL] [Abstract][Full Text] [Related]
13. Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography. Kasi DG; de Graaf MNS; Motreuil-Ragot PA; Frimat JMS; Ferrari MD; Sarro PM; Mastrangeli M; van den Maagdenberg AMJM; Mummery CL; Orlova VV Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056214 [TBL] [Abstract][Full Text] [Related]
15. Monitoring spatial distribution of ethanol in microfluidic channels by using a thin layer of cholesteric liquid crystal. Sutarlie L; Yang KL Lab Chip; 2011 Dec; 11(23):4093-8. PubMed ID: 22030694 [TBL] [Abstract][Full Text] [Related]
16. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Fidalgo LM; Whyte G; Bratton D; Kaminski CF; Abell C; Huck WT Angew Chem Int Ed Engl; 2008; 47(11):2042-5. PubMed ID: 18264960 [No Abstract] [Full Text] [Related]
17. Fabrication of a Microfluidic Cell Culture Device Using Photolithographic and Soft Lithographic Techniques. Christoffersson J; Mandenius CF Methods Mol Biol; 2019; 1994():227-233. PubMed ID: 31124120 [TBL] [Abstract][Full Text] [Related]
18. Cofabrication: a strategy for building multicomponent microsystems. Siegel AC; Tang SK; Nijhuis CA; Hashimoto M; Phillips ST; Dickey MD; Whitesides GM Acc Chem Res; 2010 Apr; 43(4):518-28. PubMed ID: 20088528 [TBL] [Abstract][Full Text] [Related]
19. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications. Yue W; Li CW; Xu T; Yang M Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749 [TBL] [Abstract][Full Text] [Related]
20. Rapid prototyping polymers for microfluidic devices and high pressure injections. Sollier E; Murray C; Maoddi P; Di Carlo D Lab Chip; 2011 Nov; 11(22):3752-65. PubMed ID: 21979377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]