These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Tutak W; Sarkar S; Lin-Gibson S; Farooque TM; Jyotsnendu G; Wang D; Kohn J; Bolikal D; Simon CG Biomaterials; 2013 Mar; 34(10):2389-98. PubMed ID: 23312903 [TBL] [Abstract][Full Text] [Related]
3. Measuring dimensionality of cell-scaffold contacts of primary human bone marrow stromal cells cultured on electrospun fiber scaffolds. Florczyk SJ; Hotaling NA; Simon M; Chalfoun J; Horenberg AL; Schaub NJ; Wang D; Szczypiński PM; DeFelice VL; Bajcsy P; Simon CG J Biomed Mater Res A; 2023 Jan; 111(1):106-117. PubMed ID: 36194510 [TBL] [Abstract][Full Text] [Related]
4. Ontology analysis of global gene expression differences of human bone marrow stromal cells cultured on 3D scaffolds or 2D films. Baker BA; Pine PS; Chatterjee K; Kumar G; Lin NJ; McDaniel JH; Salit ML; Simon CG Biomaterials; 2014 Aug; 35(25):6716-26. PubMed ID: 24840613 [TBL] [Abstract][Full Text] [Related]
5. Nanofiber scaffolds influence organelle structure and function in bone marrow stromal cells. Tutak W; Jyotsnendu G; Bajcsy P; Simon CG J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):989-1001. PubMed ID: 26888543 [TBL] [Abstract][Full Text] [Related]
6. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Kumar G; Tison CK; Chatterjee K; Pine PS; McDaniel JH; Salit ML; Young MF; Simon CG Biomaterials; 2011 Dec; 32(35):9188-96. PubMed ID: 21890197 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Raic A; Rödling L; Kalbacher H; Lee-Thedieck C Biomaterials; 2014 Jan; 35(3):929-40. PubMed ID: 24176196 [TBL] [Abstract][Full Text] [Related]
8. A Bioinformatics 3D Cellular Morphotyping Strategy for Assessing Biomaterial Scaffold Niches. Florczyk SJ; Simon M; Juba D; Pine PS; Sarkar S; Chen D; Baker PJ; Bodhak S; Cardone A; Brady MC; Bajcsy P; Simon CG ACS Biomater Sci Eng; 2017 Oct; 3(10):2302-2313. PubMed ID: 33445289 [TBL] [Abstract][Full Text] [Related]
9. Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering. Hsu SH; Huang TB; Cheng SJ; Weng SY; Tsai CL; Tseng CS; Chen DC; Liu TY; Fu KY; Yen BL Tissue Eng Part A; 2011 Jun; 17(11-12):1549-60. PubMed ID: 21284540 [TBL] [Abstract][Full Text] [Related]
10. Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Kumar G; Waters MS; Farooque TM; Young MF; Simon CG Biomaterials; 2012 Jun; 33(16):4022-30. PubMed ID: 22417619 [TBL] [Abstract][Full Text] [Related]
11. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model. Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336 [TBL] [Abstract][Full Text] [Related]
12. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis. Guerrero J; Catros S; Derkaoui SM; Lalande C; Siadous R; Bareille R; Thébaud N; Bordenave L; Chassande O; Le Visage C; Letourneur D; Amédée J Acta Biomater; 2013 Sep; 9(9):8200-13. PubMed ID: 23743130 [TBL] [Abstract][Full Text] [Related]
13. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. Kazemnejad S; Allameh A; Soleimani M; Gharehbaghian A; Mohammadi Y; Amirizadeh N; Jazayery M J Gastroenterol Hepatol; 2009 Feb; 24(2):278-87. PubMed ID: 18752558 [TBL] [Abstract][Full Text] [Related]
14. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089 [TBL] [Abstract][Full Text] [Related]
15. Caveolin-1 mediates soft scaffold-enhanced adipogenesis of human mesenchymal stem cells. Xiang S; Li Z; Fritch MR; Li L; Velankar S; Liu Y; Sohn J; Baker N; Lin H; Tuan RS Stem Cell Res Ther; 2021 Jun; 12(1):347. PubMed ID: 34127047 [TBL] [Abstract][Full Text] [Related]
16. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system. Kim JY; Yoon JJ; Park EK; Kim DS; Kim SY; Cho DW Biofabrication; 2009 Mar; 1(1):015002. PubMed ID: 20811097 [TBL] [Abstract][Full Text] [Related]
17. Optimization of electrospray fabrication of stem cell-embedded alginate-gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering. Xu Y; Peng J; Richards G; Lu S; Eglin D J Orthop Translat; 2019 Jul; 18():128-141. PubMed ID: 31508316 [TBL] [Abstract][Full Text] [Related]
18. Influence of the three-dimensional culture of human bone marrow mesenchymal stromal cells within a macroporous polysaccharides scaffold on Pannexin 1 and Pannexin 3. Guerrero J; Oliveira H; Aid R; Bareille R; Siadous R; Letourneur D; Mao Y; Kohn J; Amédée J J Tissue Eng Regen Med; 2018 Apr; 12(4):e1936-e1949. PubMed ID: 29222846 [TBL] [Abstract][Full Text] [Related]
19. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs. Chen L; Xiao Z; Meng Y; Zhao Y; Han J; Su G; Chen B; Dai J Biomaterials; 2012 Feb; 33(5):1437-44. PubMed ID: 22078807 [TBL] [Abstract][Full Text] [Related]
20. In vitro characterization of three-dimensional scaffolds seeded with human bone marrow stromal cells for tissue engineered growth of bone: mission impossible? A methodological approach. Materna T; Rolf HJ; Napp J; Schulz J; Gelinsky M; Schliephake H Clin Oral Implants Res; 2008 Apr; 19(4):379-86. PubMed ID: 18324959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]