These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 24439900)
1. Mechanisms underlying robustness and tunability in a plant immune signaling network. Kim Y; Tsuda K; Igarashi D; Hillmer RA; Sakakibara H; Myers CL; Katagiri F Cell Host Microbe; 2014 Jan; 15(1):84-94. PubMed ID: 24439900 [TBL] [Abstract][Full Text] [Related]
2. The highly buffered Arabidopsis immune signaling network conceals the functions of its components. Hillmer RA; Tsuda K; Rallapalli G; Asai S; Truman W; Papke MD; Sakakibara H; Jones JDG; Myers CL; Katagiri F PLoS Genet; 2017 May; 13(5):e1006639. PubMed ID: 28472137 [TBL] [Abstract][Full Text] [Related]
3. Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis. Timmermann T; Poupin MJ; Vega A; Urrutia C; Ruz GA; González B PLoS One; 2019; 14(8):e0221358. PubMed ID: 31437216 [TBL] [Abstract][Full Text] [Related]
4. Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Laluk K; Luo H; Chai M; Dhawan R; Lai Z; Mengiste T Plant Cell; 2011 Aug; 23(8):2831-49. PubMed ID: 21862710 [TBL] [Abstract][Full Text] [Related]
5. Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. Tsuda K; Mine A; Bethke G; Igarashi D; Botanga CJ; Tsuda Y; Glazebrook J; Sato M; Katagiri F PLoS Genet; 2013; 9(12):e1004015. PubMed ID: 24348271 [TBL] [Abstract][Full Text] [Related]
6. Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. Sun Y; Guo H; Zhu-Salzman K; Ge F Plant Sci; 2013 Sep; 210():128-40. PubMed ID: 23849120 [TBL] [Abstract][Full Text] [Related]
9. Pathogen-triggered ethylene signaling mediates systemic-induced susceptibility to herbivory in Arabidopsis. Groen SC; Whiteman NK; Bahrami AK; Wilczek AM; Cui J; Russell JA; Cibrian-Jaramillo A; Butler IA; Rana JD; Huang GH; Bush J; Ausubel FM; Pierce NE Plant Cell; 2013 Nov; 25(11):4755-66. PubMed ID: 24285796 [TBL] [Abstract][Full Text] [Related]
10. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Niu DD; Liu HX; Jiang CH; Wang YP; Wang QY; Jin HL; Guo JH Mol Plant Microbe Interact; 2011 May; 24(5):533-42. PubMed ID: 21198361 [TBL] [Abstract][Full Text] [Related]
11. GDSL LIPASE1 modulates plant immunity through feedback regulation of ethylene signaling. Kim HG; Kwon SJ; Jang YJ; Nam MH; Chung JH; Na YC; Guo H; Park OK Plant Physiol; 2013 Dec; 163(4):1776-91. PubMed ID: 24170202 [TBL] [Abstract][Full Text] [Related]
12. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea. Zhang H; Hong Y; Huang L; Li D; Song F Sci Rep; 2016 Jul; 6():30251. PubMed ID: 27445230 [TBL] [Abstract][Full Text] [Related]
13. Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Nandi A; Kachroo P; Fukushige H; Hildebrand DF; Klessig DF; Shah J Mol Plant Microbe Interact; 2003 Jul; 16(7):588-99. PubMed ID: 12848424 [TBL] [Abstract][Full Text] [Related]
14. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Po-Wen C; Singh P; Zimmerli L Mol Plant Pathol; 2013 Jan; 14(1):58-70. PubMed ID: 22947164 [TBL] [Abstract][Full Text] [Related]