BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24439903)

  • 1. Chlamydia trachomatis-induced alterations in the host cell proteome are required for intracellular growth.
    Olive AJ; Haff MG; Emanuele MJ; Sack LM; Barker JR; Elledge SJ; Starnbach MN
    Cell Host Microbe; 2014 Jan; 15(1):113-24. PubMed ID: 24439903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis.
    Rajeeve K; Vollmuth N; Janaki-Raman S; Wulff TF; Baluapuri A; Dejure FR; Huber C; Fink J; Schmalhofer M; Schmitz W; Sivadasan R; Eilers M; Wolf E; Eisenreich W; Schulze A; Seibel J; Rudel T
    Nat Microbiol; 2020 Nov; 5(11):1390-1402. PubMed ID: 32747796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia trachomatis Infection Leads to Defined Alterations to the Lipid Droplet Proteome in Epithelial Cells.
    Saka HA; Thompson JW; Chen YS; Dubois LG; Haas JT; Moseley A; Valdivia RH
    PLoS One; 2015; 10(4):e0124630. PubMed ID: 25909443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of intracellular glutathione in the progression of Chlamydia trachomatis infection.
    Lazarev VN; Borisenko GG; Shkarupeta MM; Demina IA; Serebryakova MV; Galyamina MA; Levitskiy SA; Govorun VM
    Free Radic Biol Med; 2010 Dec; 49(12):1947-55. PubMed ID: 20888409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence lifetime imaging unravels C. trachomatis metabolism and its crosstalk with the host cell.
    Szaszák M; Steven P; Shima K; Orzekowsky-Schröder R; Hüttmann G; König IR; Solbach W; Rupp J
    PLoS Pathog; 2011 Jul; 7(7):e1002108. PubMed ID: 21779161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early Transcriptional Landscapes of
    Hayward RJ; Marsh JW; Humphrys MS; Huston WM; Myers GSA
    Front Cell Infect Microbiol; 2019; 9():392. PubMed ID: 31803632
    [No Abstract]   [Full Text] [Related]  

  • 9. Chlamydia trachomatis infection alters host cell transcription in diverse cellular pathways.
    Xia M; Bumgarner RE; Lampe MF; Stamm WE
    J Infect Dis; 2003 Feb; 187(3):424-34. PubMed ID: 12552426
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Faris R; Andersen SE; McCullough A; Gourronc F; Klingelhutz AJ; Weber MM
    Front Cell Infect Microbiol; 2019; 9():399. PubMed ID: 32039039
    [No Abstract]   [Full Text] [Related]  

  • 11. The reprogrammed host: Chlamydia trachomatis-induced up-regulation of glycoprotein 130 cytokines, transcription factors, and antiapoptotic genes.
    Hess S; Rheinheimer C; Tidow F; Bartling G; Kaps C; Lauber J; Buer J; Klos A
    Arthritis Rheum; 2001 Oct; 44(10):2392-401. PubMed ID: 11665982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydia inhibit host cell apoptosis by inducing Bag-1 via the MAPK/ERK survival pathway.
    Kun D; Xiang-Lin C; Ming Z; Qi L
    Apoptosis; 2013 Sep; 18(9):1083-92. PubMed ID: 23708800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia trachomatis Prevents Apoptosis Via Activation of PDPK1-MYC and Enhanced Mitochondrial Binding of Hexokinase II.
    Al-Zeer MA; Xavier A; Abu Lubad M; Sigulla J; Kessler M; Hurwitz R; Meyer TF
    EBioMedicine; 2017 Sep; 23():100-110. PubMed ID: 28803120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STAT3-mediated TLR2/4 pathway upregulation in an IFN-gamma-induced Chlamydia trachomatis persistent infection model.
    Yu P; Xiao L; Lin L; Tang L; Chen C; Wang F; Wang Y
    Pathog Dis; 2016 Aug; 74(6):. PubMed ID: 27502695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection.
    Kim JH; Jiang S; Elwell CA; Engel JN
    PLoS Pathog; 2011 Oct; 7(10):e1002285. PubMed ID: 21998584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development.
    Patel AL; Chen X; Wood ST; Stuart ES; Arcaro KF; Molina DP; Petrovic S; Furdui CM; Tsang AW
    BMC Microbiol; 2014 Dec; 14():277. PubMed ID: 25471819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport.
    Dille S; Kleinschnitz EM; Kontchou CW; Nölke T; Häcker G
    Infect Immun; 2015 Aug; 83(8):3268-80. PubMed ID: 26056386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection.
    Siegl C; Prusty BK; Karunakaran K; Wischhusen J; Rudel T
    Cell Rep; 2014 Nov; 9(3):918-29. PubMed ID: 25437549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydia trachomatis recruits protein kinase C during infection.
    Sah P; Nelson NH; Shaw JH; Lutter EI
    Pathog Dis; 2019 Aug; 77(6):. PubMed ID: 31647538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.
    Aeberhard L; Banhart S; Fischer M; Jehmlich N; Rose L; Koch S; Laue M; Renard BY; Schmidt F; Heuer D
    PLoS Pathog; 2015 Jun; 11(6):e1004883. PubMed ID: 26042774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.