These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24440254)

  • 1. Selection with inbreeding control in simulated young bull schemes for local dairy cattle breeds.
    Gandini G; Stella A; Del Corvo M; Jansen GB
    J Dairy Sci; 2014 Mar; 97(3):1790-8. PubMed ID: 24440254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls.
    de Roos AP; Schrooten C; Veerkamp RF; van Arendonk JA
    J Dairy Sci; 2011 Mar; 94(3):1559-67. PubMed ID: 21338821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of kinship matrices on genetic gain and inbreeding with optimum contribution selection in a genomic dairy cattle breeding program.
    Gautason E; Sahana G; Guldbrandtsen B; Berg P
    Genet Sel Evol; 2023 Jul; 55(1):48. PubMed ID: 37460999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.
    Granleese T; Clark SA; Swan AA; van der Werf JH
    Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deterministic models of breeding scheme designs that incorporate genomic selection.
    Pryce JE; Goddard ME; Raadsma HW; Hayes BJ
    J Dairy Sci; 2010 Nov; 93(11):5455-66. PubMed ID: 20965361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel optimum contribution selection methods accounting for conflicting objectives in breeding programs for livestock breeds with historical migration.
    Wang Y; Bennewitz J; Wellmann R
    Genet Sel Evol; 2017 May; 49(1):45. PubMed ID: 28499352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of a genomic breeding program for a moderately sized dairy cattle population.
    Reiner-Benaim A; Ezra E; Weller JI
    J Dairy Sci; 2017 Apr; 100(4):2892-2904. PubMed ID: 28189326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major advances in globalization and consolidation of the artificial insemination industry.
    Funk DA
    J Dairy Sci; 2006 Apr; 89(4):1362-8. PubMed ID: 16537967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adding cows to the reference population makes a small dairy population competitive.
    Thomasen JR; Sørensen AC; Lund MS; Guldbrandtsen B
    J Dairy Sci; 2014 Sep; 97(9):5822-32. PubMed ID: 24996280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population.
    Mueller ML; Cole JB; Sonstegard TS; Van Eenennaam AL
    J Dairy Sci; 2019 May; 102(5):4215-4226. PubMed ID: 30852022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of dairy cattle breeding designs that use genomic selection.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Dairy Sci; 2011 Jan; 94(1):493-500. PubMed ID: 21183061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breeding schemes with optimum-contribution selection or truncation selection for beef cattle destined for use on dairy females.
    Hjortø L; Andersen T; Kargo M; Sørensen AC
    J Dairy Sci; 2022 May; 105(5):4314-4323. PubMed ID: 35307183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benefits of cooperation between breeding programs in the presence of genotype by environment interaction.
    Mulder HA; Bijma P
    J Dairy Sci; 2006 May; 89(5):1727-39. PubMed ID: 16606744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced optimum contribution selection as a tool to improve regional cattle breeds: a feasibility study for Vorderwald cattle.
    Kohl S; Wellmann R; Herold P
    Animal; 2020 Jan; 14(1):1-12. PubMed ID: 31296274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotyping more cows increases genetic gain and reduces rate of true inbreeding in a dairy cattle breeding scheme using female reproductive technologies.
    Thomasen JR; Liu H; Sørensen AC
    J Dairy Sci; 2020 Jan; 103(1):597-606. PubMed ID: 31733861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and economic responses for within-family marker-assisted selection in dairy cattle breeding schemes.
    Spelman RJ; Garrick DJ
    J Dairy Sci; 1998 Nov; 81(11):2942-50. PubMed ID: 9839238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic progress in multistage dairy cattle breeding schemes using genetic markers.
    Schrooten C; Bovenhuis H; van Arendonk JA; Bijma P
    J Dairy Sci; 2005 Apr; 88(4):1569-81. PubMed ID: 15778327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of female information in dairy cattle genomic breeding programs.
    Mc Hugh N; Meuwissen TH; Cromie AR; Sonesson AK
    J Dairy Sci; 2011 Aug; 94(8):4109-18. PubMed ID: 21787946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of advanced Optimum Contribution Selection in small-scale breeding schemes: prospects and challenges in Vorderwald cattle.
    Kohl S; Wellmann R; Herold P
    Animal; 2020 Mar; 14(3):452-463. PubMed ID: 31597583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of genomic selection on genetic diversity and genetic gain in three French dairy cattle breeds.
    Doublet AC; Croiseau P; Fritz S; Michenet A; Hozé C; Danchin-Burge C; Laloë D; Restoux G
    Genet Sel Evol; 2019 Sep; 51(1):52. PubMed ID: 31547802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.