BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24440371)

  • 1. Acidified nitrite: a host defence against colonization with C. difficile spores?
    Cunningham R; Mustoe E; Spiller L; Lewis S; Benjamin N
    J Hosp Infect; 2014 Feb; 86(2):155-7. PubMed ID: 24440371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity of three disinfectants and acidified nitrite against Clostridium difficile spores.
    Wullt M; Odenholt I; Walder M
    Infect Control Hosp Epidemiol; 2003 Oct; 24(10):765-8. PubMed ID: 14587940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea?
    Jump RL; Pultz MJ; Donskey CJ
    Antimicrob Agents Chemother; 2007 Aug; 51(8):2883-7. PubMed ID: 17562803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the effect of oritavancin on Clostridium difficile spore germination, outgrowth and recovery.
    Chilton CH; Freeman J; Baines SD; Crowther GS; Nicholson S; Wilcox MH
    J Antimicrob Chemother; 2013 Sep; 68(9):2078-82. PubMed ID: 23759507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intragastric generation of antimicrobial nitrogen oxides from saliva--physiological and therapeutic considerations.
    Björne H; Weitzberg E; Lundberg JO
    Free Radic Biol Med; 2006 Nov; 41(9):1404-12. PubMed ID: 17023267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro killing of nosocomial pathogens by acid and acidified nitrite.
    Rao A; Jump RL; Pultz NJ; Pultz MJ; Donskey CJ
    Antimicrob Agents Chemother; 2006 Nov; 50(11):3901-4. PubMed ID: 17065628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oritavancin does not induce Clostridium difficile germination and toxin production in hamsters or a human gut model.
    Freeman J; Marquis M; Crowther GS; Todhunter SL; Fawley WN; Chilton CH; Moeck G; Lehoux D; Wilcox MH
    J Antimicrob Chemother; 2012 Dec; 67(12):2919-26. PubMed ID: 22899803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of selected oxidizing microbicides against the spores of Clostridium difficile: relevance to environmental control.
    Perez J; Springthorpe VS; Sattar SA
    Am J Infect Control; 2005 Aug; 33(6):320-5. PubMed ID: 16061137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of oritavancin versus vancomycin as treatments for clindamycin-induced Clostridium difficile PCR ribotype 027 infection in a human gut model.
    Baines SD; O'Connor R; Saxton K; Freeman J; Wilcox MH
    J Antimicrob Chemother; 2008 Nov; 62(5):1078-85. PubMed ID: 18772161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of vancomycin against epidemic Clostridium difficile strains in a human gut model.
    Baines SD; O'Connor R; Saxton K; Freeman J; Wilcox MH
    J Antimicrob Chemother; 2009 Mar; 63(3):520-5. PubMed ID: 19112083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambush of Clostridium difficile spores by ramoplanin: activity in an in vitro model.
    Kraus CN; Lyerly MW; Carman RJ
    Antimicrob Agents Chemother; 2015 May; 59(5):2525-30. PubMed ID: 25691641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examination of potential mechanisms to explain the association between proton pump inhibitors and Clostridium difficile infection.
    Nerandzic MM; Pultz MJ; Donskey CJ
    Antimicrob Agents Chemother; 2009 Oct; 53(10):4133-7. PubMed ID: 19667292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial activity of rhodomyrtone on Clostridium difficile vegetative cells and spores in vitro.
    Srisuwan S; Mackin KE; Hocking D; Lyras D; Bennett-Wood V; Voravuthikunchai SP; Robins-Browne RM
    Int J Antimicrob Agents; 2018 Nov; 52(5):724-729. PubMed ID: 30145248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new strategy for the prevention of Clostridium difficile infection.
    Howerton A; Patra M; Abel-Santos E
    J Infect Dis; 2013 May; 207(10):1498-504. PubMed ID: 23420906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolating and Purifying Clostridium difficile Spores.
    Edwards AN; McBride SM
    Methods Mol Biol; 2016; 1476():117-28. PubMed ID: 27507337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the sporicidal activity of different chemical disinfectants used in hospitals against Clostridium difficile.
    Speight S; Moy A; Macken S; Chitnis R; Hoffman PN; Davies A; Bennett A; Walker JT
    J Hosp Infect; 2011 Sep; 79(1):18-22. PubMed ID: 21802172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effect of REP3123 on toxin and spore formation in Clostridium difficile, and in vivo efficacy in a hamster gastrointestinal infection model.
    Ochsner UA; Bell SJ; O'Leary AL; Hoang T; Stone KC; Young CL; Critchley IA; Janjic N
    J Antimicrob Chemother; 2009 May; 63(5):964-71. PubMed ID: 19251726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed infection by Clostridium difficile in an in vitro model of the human gut.
    Baines SD; Crowther GS; Todhunter SL; Freeman J; Chilton CH; Fawley WN; Wilcox MH
    J Antimicrob Chemother; 2013 May; 68(5):1139-43. PubMed ID: 23354280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of hospital biocide sodium dichloroisocyanurate on the viability and properties of Clostridium difficile spores.
    Joshi LT; Welsch A; Hawkins J; Baillie L
    Lett Appl Microbiol; 2017 Sep; 65(3):199-205. PubMed ID: 28639362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity in vitro of hydrogen peroxide vapour against Clostridium difficile spores.
    Barbut F; Yezli S; Otter JA
    J Hosp Infect; 2012 Jan; 80(1):85-7. PubMed ID: 22099497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.