These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 24440416)
1. Inhibition and motor control in the developing zebrafish spinal cord. Fidelin K; Wyart C Curr Opin Neurobiol; 2014 Jun; 26():103-9. PubMed ID: 24440416 [TBL] [Abstract][Full Text] [Related]
2. The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord. Nishimaru H; Kakizaki M Acta Physiol (Oxf); 2009 Oct; 197(2):83-97. PubMed ID: 19673737 [TBL] [Abstract][Full Text] [Related]
3. Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish. Liao JC; Fetcho JR J Neurosci; 2008 Nov; 28(48):12982-92. PubMed ID: 19036991 [TBL] [Abstract][Full Text] [Related]
4. GABAergic and glycinergic interneuron expression during spinal cord development: dynamic interplay between inhibition and excitation in the control of ventral network outputs. Sibilla S; Ballerini L Prog Neurobiol; 2009 Sep; 89(1):46-60. PubMed ID: 19539686 [TBL] [Abstract][Full Text] [Related]
5. [Neurons in motion: spinal networks controlling left-right alternation of walking movements deciphered by genetics]. Bouvier J Med Sci (Paris); 2014 Feb; 30(2):121-4. PubMed ID: 24572103 [No Abstract] [Full Text] [Related]
6. Locomotor pattern in the adult zebrafish spinal cord in vitro. Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928 [TBL] [Abstract][Full Text] [Related]
7. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Zhang J; Lanuza GM; Britz O; Wang Z; Siembab VC; Zhang Y; Velasquez T; Alvarez FJ; Frank E; Goulding M Neuron; 2014 Apr; 82(1):138-50. PubMed ID: 24698273 [TBL] [Abstract][Full Text] [Related]
8. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity. Jackson AW; Horinek DF; Boyd MR; McClellan AD J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521 [TBL] [Abstract][Full Text] [Related]
10. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord. Hinckley C; Seebach B; Ziskind-Conhaim L Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878 [TBL] [Abstract][Full Text] [Related]
11. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling. Yoshida M; Roberts A; Soffe SR J Comp Neurol; 1998 Nov; 400(4):504-18. PubMed ID: 9786411 [TBL] [Abstract][Full Text] [Related]
12. Locomotor-related activity of GABAergic interneurons localized in the ventrolateral region in the isolated spinal cord of neonatal mice. Nishimaru H; Sakagami H; Kakizaki M; Yanagawa Y J Neurophysiol; 2011 Oct; 106(4):1782-92. PubMed ID: 21734105 [TBL] [Abstract][Full Text] [Related]
13. Deciphering the organization and modulation of spinal locomotor central pattern generators. Gordon IT; Whelan PJ J Exp Biol; 2006 Jun; 209(Pt 11):2007-14. PubMed ID: 16709903 [TBL] [Abstract][Full Text] [Related]
14. A topographic map of recruitment in spinal cord. McLean DL; Fan J; Higashijima S; Hale ME; Fetcho JR Nature; 2007 Mar; 446(7131):71-5. PubMed ID: 17330042 [TBL] [Abstract][Full Text] [Related]
15. Contribution of postural muscle tone to full expression of posture and locomotor movements: multi-faceted analyses of its setting brainstem-spinal cord mechanisms in the cat. Mori S Jpn J Physiol; 1989; 39(6):785-809. PubMed ID: 2698966 [TBL] [Abstract][Full Text] [Related]
16. Transmitter phenotypes of commissural interneurons in the lamprey spinal cord. Mahmood R; Restrepo CE; El Manira A Neuroscience; 2009 Dec; 164(3):1057-67. PubMed ID: 19737601 [TBL] [Abstract][Full Text] [Related]
17. Reconfiguration of the spinal interneuronal network during locomotion in vertebrates. Frigon A J Neurophysiol; 2009 May; 101(5):2201-3. PubMed ID: 19279156 [TBL] [Abstract][Full Text] [Related]
18. Cryptic organisation within an apparently irregular rostrocaudal distribution of interneurons in the embryonic zebrafish spinal cord. Wells S; Conran JG; Tamme R; Gaudin A; Webb J; Lardelli M Exp Cell Res; 2010 Nov; 316(19):3292-303. PubMed ID: 20599944 [TBL] [Abstract][Full Text] [Related]
19. Inhibitory synaptic modulation of renshaw cell activity in the lumbar spinal cord of neonatal mice. Nishimaru H; Koganezawa T; Kakizaki M; Ebihara T; Yanagawa Y J Neurophysiol; 2010 Jun; 103(6):3437-47. PubMed ID: 20410357 [TBL] [Abstract][Full Text] [Related]
20. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva. McDearmid JR; Drapeau P J Neurophysiol; 2006 Jan; 95(1):401-17. PubMed ID: 16207779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]