BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24440554)

  • 1. Bilayer surface association of the pHLIP peptide promotes extensive backbone desolvation and helically-constrained structures.
    Brown MC; Yakubu RA; Taylor J; Halsey CM; Xiong J; Jiji RD; Cooley JW
    Biophys Chem; 2014; 187-188():1-6. PubMed ID: 24440554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the lipid environment on valinomycin structure and cation complex formation.
    Halsey CM; Benham DA; JiJi RD; Cooley JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():200-6. PubMed ID: 22683555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-UV resonance Raman analysis of the Rhodobacter capsulatus cytochrome bc₁complex reveals a potential marker for the transmembrane peptide backbone.
    Halsey CM; Oshokoya OO; Jiji RD; Cooley JW
    Biochemistry; 2011 Aug; 50(30):6531-8. PubMed ID: 21718040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane.
    Reshetnyak YK; Andreev OA; Segala M; Markin VS; Engelman DM
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15340-5. PubMed ID: 18829441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of lipid-dependent bilayer insertion of pHLIP and its P20G variant.
    Vasquez-Montes V; Gerhart J; King KE; Thévenin D; Ladokhin AS
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):534-543. PubMed ID: 29138065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-induced insertion of pHLIP into a lipid bilayer: In-situ SEIRAS characterization of a folding intermediate at neutral pH.
    Ataka K; Drauschke J; Stulberg V; Koksch B; Heberle J
    Biochim Biophys Acta Biomembr; 2022 Jun; 1864(6):183873. PubMed ID: 35104491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid headgroups modulate membrane insertion of pHLIP peptide.
    Kyrychenko A; Vasquez-Montes V; Ulmschneider MB; Ladokhin AS
    Biophys J; 2015 Feb; 108(4):791-794. PubMed ID: 25692583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative Nonbonded Forces Control Membrane Binding of the pH-Low Insertion Peptide pHLIP.
    Gupta C; Ren Y; Mertz B
    Biophys J; 2018 Dec; 115(12):2403-2412. PubMed ID: 30503536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-Induced p K
    Vila-Viçosa D; Silva TFD; Slaybaugh G; Reshetnyak YK; Andreev OA; Machuqueiro M
    J Chem Theory Comput; 2018 Jun; 14(6):3289-3297. PubMed ID: 29733633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residue-specific structures and membrane locations of pH-low insertion peptide by solid-state nuclear magnetic resonance.
    Shu NS; Chung MS; Yao L; An M; Qiang W
    Nat Commun; 2015 Jul; 6():7787. PubMed ID: 26195283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the membrane binding and insertion kinetics of a pHLIP peptide.
    Tang J; Gai F
    Biochemistry; 2008 Aug; 47(32):8250-2. PubMed ID: 18636715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane binding and insertion of a pHLIP peptide studied by all-atom molecular dynamics simulations.
    Deng Y; Qian Z; Luo Y; Zhang Y; Mu Y; Wei G
    Int J Mol Sci; 2013 Jul; 14(7):14532-49. PubMed ID: 23857053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correct folding of the beta-barrel of the human membrane protein VDAC requires a lipid bilayer.
    Shanmugavadivu B; Apell HJ; Meins T; Zeth K; Kleinschmidt JH
    J Mol Biol; 2007 Apr; 368(1):66-78. PubMed ID: 17336328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-dependent thermodynamic intermediates of pHLIP membrane insertion determined by solid-state NMR spectroscopy.
    Otieno SA; Hanz SZ; Chakravorty B; Zhang A; Klees LM; An M; Qiang W
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12194-12199. PubMed ID: 30442664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane physical properties influence transmembrane helix formation.
    Barrera FN; Fendos J; Engelman DM
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14422-7. PubMed ID: 22908237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane protein folding and stability: physical principles.
    White SH; Wimley WC
    Annu Rev Biophys Biomol Struct; 1999; 28():319-65. PubMed ID: 10410805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high-resolution and solid-state NMR spectroscopy.
    Wray V; Kinder R; Federau T; Henklein P; Bechinger B; Schubert U
    Biochemistry; 1999 Apr; 38(16):5272-82. PubMed ID: 10213635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition.
    Meijberg W; Booth PJ
    J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers.
    Reshetnyak YK; Segala M; Andreev OA; Engelman DM
    Biophys J; 2007 Oct; 93(7):2363-72. PubMed ID: 17557792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.