BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24440653)

  • 1. Biodegradation of 3,4 dichloroaniline by fungal isolated from the preconditioning phase of winery wastes subjected to vermicomposting.
    Castillo JM; Nogales R; Romero E
    J Hazard Mater; 2014 Feb; 267():119-27. PubMed ID: 24440653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vermicomposting of winery wastes: a laboratory study.
    Nogales R; Cifuentes C; Benítez E
    J Environ Sci Health B; 2005; 40(4):659-73. PubMed ID: 16047887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-acetylation of toxic aromatic amines by fungi: Strain screening, cytotoxicity and genotoxicity evaluation, and application in bioremediation of 3,4-dichloroaniline.
    Rodrigues AD; Dos Santos Montanholi A; Shimabukuro AA; Yonekawa MKA; Cassemiro NS; Silva DB; Marchetti CR; Weirich CE; Beatriz A; Zanoelo FF; Marques MR; Giannesi GC; das Neves SC; Oliveira RJ; Ruller R; de Lima DP; Dos Anjos Dos Santos E
    J Hazard Mater; 2023 Jan; 441():129887. PubMed ID: 36115092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in fungal population of fly ash and vinasse mixture during vermicomposting by Eudrilus eugeniae and Eisenia fetida: documentation of cellulase isozymes in vermicompost.
    Pramanik P; Chung YR
    Waste Manag; 2011 Jun; 31(6):1169-75. PubMed ID: 21277188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of dichloroaniline isomers by a newly isolated strain, Bacillus megaterium IMT21.
    Yao XF; Khan F; Pandey R; Pandey J; Mourant RG; Jain RK; Guo JH; Russell RJ; Oakeshott JG; Pandey G
    Microbiology (Reading); 2011 Mar; 157(Pt 3):721-726. PubMed ID: 21163842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium.
    Zahra S; Abbas SS; Mahsa MT; Mohsen N
    Waste Manag; 2010 Mar; 30(3):396-401. PubMed ID: 19919893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes.
    Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF
    Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of different types of organic wastes through vermicomposting.
    Bharadwaj A
    J Environ Sci Eng; 2011 Jul; 53(3):371-4. PubMed ID: 23029940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of fungal biomass protein using microfungi from winery wastewater treatment.
    Zhang ZY; Jin B; Bai ZH; Wang XY
    Bioresour Technol; 2008 Jun; 99(9):3871-6. PubMed ID: 17911010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates.
    Van Lancker F; Adams A; Delmulle B; De Saeger S; Moretti A; Van Peteghem C; De Kimpe N
    J Environ Monit; 2008 Oct; 10(10):1127-33. PubMed ID: 18843388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial degradation of pendimethalin.
    Singh SB; Kulshrestha G
    J Environ Sci Health B; 1991 Jun; 26(3):309-21. PubMed ID: 1894917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts.
    Castillo Diaz JM; Delgado-Moreno L; Núñez R; Nogales R; Romero E
    Bioresour Technol; 2016 Aug; 214():234-241. PubMed ID: 27136610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four marine-derived fungi for bioremediation of raw textile mill effluents.
    Verma AK; Raghukumar C; Verma P; Shouche YS; Naik CG
    Biodegradation; 2010 Apr; 21(2):217-33. PubMed ID: 19763847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of vermicomposts from wastes of the wine and alcohol industries in the persistence and distribution of imidacloprid and diuron on agricultural soils.
    Fernández-Bayo JD; Nogales R; Romero E
    J Agric Food Chem; 2009 Jun; 57(12):5435-42. PubMed ID: 19530717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation and removal of 3,4-dichloroaniline by Chlorella pyrenoidosa based on liquid chromatography-electrospray ionization-mass spectrometry.
    Wang S; Poon K; Cai Z
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):552-7. PubMed ID: 22669566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.
    Karpe AV; Beale DJ; Godhani NB; Morrison PD; Harding IH; Palombo EA
    J Agric Food Chem; 2015 Dec; 63(49):10696-704. PubMed ID: 26611372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decolorization and degradation of azo dye--Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil.
    Jain K; Shah V; Chapla D; Madamwar D
    J Hazard Mater; 2012 Apr; 213-214():378-86. PubMed ID: 22370200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioremediation: an important alternative for soil and industrial wastes clean-up.
    Soccol CR; Vandenberghe LP; Woiciechowski AL; Thomaz-Soccol V; Correia CT; Pandey A
    Indian J Exp Biol; 2003 Sep; 41(9):1030-45. PubMed ID: 15242296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography.
    Popiel S; Sankowska M
    J Chromatogr A; 2011 Nov; 1218(47):8457-79. PubMed ID: 22015307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2.
    Hongsawat P; Vangnai AS
    J Hazard Mater; 2011 Feb; 186(2-3):1300-7. PubMed ID: 21177022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.