BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24440654)

  • 1. Growth of streptomycetes in soil and their impact on bioremediation.
    Schütze E; Klose M; Merten D; Nietzsche S; Senftleben D; Roth M; Kothe E
    J Hazard Mater; 2014 Feb; 267():128-35. PubMed ID: 24440654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Siderophore production by streptomycetes-stability and alteration of ferrihydroxamates in heavy metal-contaminated soil.
    Schütze E; Ahmed E; Voit A; Klose M; Greyer M; Svatoš A; Merten D; Roth M; Holmström SJ; Kothe E
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19376-83. PubMed ID: 25414032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.
    Duponnois R; Kisa M; Assigbetse K; Prin Y; Thioulouse J; Issartel M; Moulin P; Lepage M
    Sci Total Environ; 2006 Nov; 370(2-3):391-400. PubMed ID: 16989893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu.
    Padmapriya S; Murugan N; Ragavendran C; Thangabalu R; Natarajan D
    Int J Phytoremediation; 2016; 18(3):288-94. PubMed ID: 26366709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.
    Rajkumar M; Vara Prasad MN; Freitas H; Ae N
    Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.
    Marques AP; Moreira H; Franco AR; Rangel AO; Castro PM
    Chemosphere; 2013 Jun; 92(1):74-83. PubMed ID: 23582407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals.
    Rajkumar M; Freitas H
    Chemosphere; 2008 Mar; 71(5):834-42. PubMed ID: 18164365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremophile Metal Resistance: Plasmid-Encoded Functions in Streptomyces mirabilis.
    Brangsch H; Höller M; Krauβe T; Waqas M; Schroeckh V; Brakhage AA; Bunk B; Spröer C; Overmann J; Kothe E
    Appl Environ Microbiol; 2022 Jun; 88(11):e0008522. PubMed ID: 35604229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench and soil microbial community-level physiological profiles (CLPPs).
    Wang X; Chen C; Wang J
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7668-7678. PubMed ID: 28124267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-resistant microorganisms and metal chelators synergistically enhance the phytoremediation efficiency of Solanum nigrum L. in Cd- and Pb-contaminated soil.
    Gao Y; Miao C; Wang Y; Xia J; Zhou P
    Environ Technol; 2012 Jun; 33(10-12):1383-9. PubMed ID: 22856313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment.
    Bonfranceschi BA; Flocco CG; Donati ER
    J Hazard Mater; 2009 Jun; 165(1-3):366-71. PubMed ID: 19010592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system.
    Wang X; Chen C; Wang J
    Int J Phytoremediation; 2017 Apr; 19(4):402-412. PubMed ID: 27739906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.
    Rajkumar M; Ae N; Prasad MN; Freitas H
    Trends Biotechnol; 2010 Mar; 28(3):142-9. PubMed ID: 20044160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of chromium(VI) contaminated soil by Streptomyces sp. MC1.
    Polti MA; García RO; Amoroso MJ; Abate CM
    J Basic Microbiol; 2009 Jun; 49(3):285-92. PubMed ID: 19025876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation.
    Khan AG
    J Trace Elem Med Biol; 2005; 18(4):355-64. PubMed ID: 16028497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endophytic bacteria and their potential to enhance heavy metal phytoextraction.
    Rajkumar M; Ae N; Freitas H
    Chemosphere; 2009 Sep; 77(2):153-60. PubMed ID: 19647283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review.
    Lebeau T; Braud A; Jézéquel K
    Environ Pollut; 2008 Jun; 153(3):497-522. PubMed ID: 17981382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.