These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24441081)

  • 21. Hyphenation of strong cation exchange chromatography to native mass spectrometry for high throughput online characterization of charge heterogeneity of therapeutic monoclonal antibodies.
    Ma F; Raoufi F; Bailly MA; Fayadat-Dilman L; Tomazela D
    MAbs; 2020; 12(1):1763762. PubMed ID: 32370592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast analysis of antibody-derived therapeutics by automated multidimensional liquid chromatography - Mass spectrometry.
    Pot S; Gstöttner C; Heinrich K; Hoelterhoff S; Grunert I; Leiss M; Bathke A; Domínguez-Vega E
    Anal Chim Acta; 2021 Nov; 1184():339015. PubMed ID: 34625261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of charge variants of a monoclonal antibody using weak anion exchange chromatography at subunit levels.
    Ponniah G; Nowak C; Neill A; Liu H
    Anal Biochem; 2017 Mar; 520():49-57. PubMed ID: 28024755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of anomalous charge variant profile reveals discrete pH-dependent conformations and conformation-dependent charge states within the CDR3 loop of a therapeutic mAb.
    Lan W; Valente JJ; Ilott A; Chennamsetty N; Liu Z; Rizzo JM; Yamniuk AP; Qiu D; Shackman HM; Bolgar MS
    MAbs; 2020; 12(1):1763138. PubMed ID: 32432964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody.
    Vlasak J; Bussat MC; Wang S; Wagner-Rousset E; Schaefer M; Klinguer-Hamour C; Kirchmeier M; Corvaïa N; Ionescu R; Beck A
    Anal Biochem; 2009 Sep; 392(2):145-54. PubMed ID: 19497295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a rapid RP-UHPLC-MS method for analysis of modifications in therapeutic monoclonal antibodies.
    Zhang B; Jeong J; Burgess B; Jazayri M; Tang Y; Taylor Zhang Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Oct; 1032():172-181. PubMed ID: 27233581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the Impact of Methionine Oxidation on the Biological Functions of IgG1 Antibodies Using Hydrogen/Deuterium Exchange Mass Spectrometry.
    Mo J; Yan Q; So CK; Soden T; Lewis MJ; Hu P
    Anal Chem; 2016 Oct; 88(19):9495-9502. PubMed ID: 27575380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elucidating the effects of pH shift on IgG1 monoclonal antibody acidic charge variant levels in Chinese hamster ovary cell cultures.
    Xie P; Niu H; Chen X; Zhang X; Miao S; Deng X; Liu X; Tan WS; Zhou Y; Fan L
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10343-10353. PubMed ID: 27484582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering an anti-CD52 antibody for enhanced deamidation stability.
    Qiu H; Wei R; Jaworski J; Boudanova E; Hughes H; VanPatten S; Lund A; Day J; Zhou Y; McSherry T; Pan CQ; Sendak R
    MAbs; 2019 Oct; 11(7):1266-1275. PubMed ID: 31199181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HIC resolution of an IgG1 with an oxidized Trp in a complementarity determining region.
    Boyd D; Kaschak T; Yan B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Apr; 879(13-14):955-60. PubMed ID: 21440514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-Function Assessment and High-Throughput Quantification of Site-Specific Aspartate Isomerization in Monoclonal Antibody Using a Novel Analytical Tool Kit.
    Zhou K; Cao X; Bautista J; Chen Z; Hershey N; Ludwig R; Tao L; Zeng M; Das TK
    J Pharm Sci; 2020 Jan; 109(1):422-428. PubMed ID: 31469998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advantages of extended bottom-up proteomics using Sap9 for analysis of monoclonal antibodies.
    Srzentić K; Fornelli L; Laskay ÜA; Monod M; Beck A; Ayoub D; Tsybin YO
    Anal Chem; 2014 Oct; 86(19):9945-53. PubMed ID: 25207962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of cysteinylation of a free cysteine in the Fab region of a recombinant monoclonal IgG1 antibody using Lys-C limited proteolysis coupled with LC/MS analysis.
    Gadgil HS; Bondarenko PV; Pipes GD; Dillon TM; Banks D; Abel J; Kleemann GR; Treuheit MJ
    Anal Biochem; 2006 Aug; 355(2):165-74. PubMed ID: 16828048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of critical chemical modifications and paratope mapping by size exclusion chromatography of stressed antibody-target complexes.
    Bondarenko P; Nichols AC; Xiao G; Shi RL; Chan PK; Dillon TM; Garces F; Semin DJ; Ricci MS
    MAbs; 2021; 13(1):1887629. PubMed ID: 33615991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Tryptophan Oxidation in Complementarity-Determining Regions of Two Monoclonal Antibodies on Structure-Function Characterized by Hydrogen-Deuterium Exchange Mass Spectrometry and Surface Plasmon Resonance.
    Hageman T; Wei H; Kuehne P; Fu J; Ludwig R; Tao L; Leone A; Zocher M; Das TK
    Pharm Res; 2018 Dec; 36(1):24. PubMed ID: 30536043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using bispecific antibodies in forced degradation studies to analyze the structure-function relationships of symmetrically and asymmetrically modified antibodies.
    Evans AR; Capaldi MT; Goparaju G; Colter D; Shi FF; Aubert S; Li LC; Mo J; Lewis MJ; Hu P; Alfonso P; Mehndiratta P
    MAbs; 2019; 11(6):1101-1112. PubMed ID: 31161859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recombinant antibody color resulting from advanced glycation end product modifications.
    Butko M; Pallat H; Cordoba A; Yu XC
    Anal Chem; 2014 Oct; 86(19):9816-23. PubMed ID: 25181536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous monitoring of oxidation, deamidation, isomerization, and glycosylation of monoclonal antibodies by liquid chromatography-mass spectrometry method with ultrafast tryptic digestion.
    Wang Y; Li X; Liu YH; Richardson D; Li H; Shameem M; Yang X
    MAbs; 2016; 8(8):1477-1486. PubMed ID: 27598507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen exchange mass spectrometry reveals protein interfaces and distant dynamic coupling effects during the reversible self-association of an IgG1 monoclonal antibody.
    Arora J; Hickey JM; Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Weis DD; Volkin DB
    MAbs; 2015; 7(3):525-39. PubMed ID: 25875351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of degradation processes in IgG1 monoclonal antibodies by limited proteolysis coupled with weak cation-exchange HPLC.
    Lau H; Pace D; Yan B; McGrath T; Smallwood S; Patel K; Park J; Park SS; Latypov RF
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Apr; 878(11-12):868-76. PubMed ID: 20206584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.