These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24441081)

  • 41. Identification of multiple sources of charge heterogeneity in a recombinant antibody.
    Harris RJ; Kabakoff B; Macchi FD; Shen FJ; Kwong M; Andya JD; Shire SJ; Bjork N; Totpal K; Chen AB
    J Chromatogr B Biomed Sci Appl; 2001 Mar; 752(2):233-45. PubMed ID: 11270864
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of deamidation and isomerization sites on pharmaceutical recombinant antibody using H(2)(18)O.
    Terashima I; Koga A; Nagai H
    Anal Biochem; 2007 Sep; 368(1):49-60. PubMed ID: 17617368
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Charge variants characterization of a monoclonal antibody by ion exchange chromatography coupled on-line to native mass spectrometry: Case study after a long-term storage at +5°C.
    Leblanc Y; Ramon C; Bihoreau N; Chevreux G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1048():130-139. PubMed ID: 28242492
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development, validation, and implementation of a robust and quality control-friendly focused peptide mapping method for monitoring oxidation of co-formulated monoclonal antibodies.
    Xu C; Khanal S; Pierson NA; Quiroz J; Kochert B; Yang X; Wylie D; Strulson CA
    Anal Bioanal Chem; 2022 Dec; 414(29-30):8317-8330. PubMed ID: 36443451
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping.
    Bongers J; Devincentis J; Fu J; Huang P; Kirkley DH; Leister K; Liu P; Ludwig R; Rumney K; Tao L; Wu W; Russell RJ
    J Chromatogr A; 2011 Nov; 1218(45):8140-9. PubMed ID: 21978954
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The LC/MS analysis of glycation of IgG molecules in sucrose containing formulations.
    Gadgil HS; Bondarenko PV; Pipes G; Rehder D; McAuley A; Perico N; Dillon T; Ricci M; Treuheit M
    J Pharm Sci; 2007 Oct; 96(10):2607-21. PubMed ID: 17621682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of multiple sources of the acidic charge variants in an IgG1 monoclonal antibody.
    Miao S; Xie P; Zou M; Fan L; Liu X; Zhou Y; Zhao L; Ding D; Wang H; Tan WS
    Appl Microbiol Biotechnol; 2017 Jul; 101(14):5627-5638. PubMed ID: 28439623
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of the acidic species of a monoclonal antibody using weak cation exchange chromatography and LC-MS.
    Ponniah G; Kita A; Nowak C; Neill A; Kori Y; Rajendran S; Liu H
    Anal Chem; 2015 Sep; 87(17):9084-92. PubMed ID: 26222016
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rates and impact of human antibody glycation in vivo.
    Goetze AM; Liu YD; Arroll T; Chu L; Flynn GC
    Glycobiology; 2012 Feb; 22(2):221-34. PubMed ID: 21930650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Post-translational modifications in collagen type I of bone in a mouse model of aging.
    Creecy A; Brown KL; Rose KL; Voziyan P; Nyman JS
    Bone; 2021 Feb; 143():115763. PubMed ID: 33220504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A study in glycation of a therapeutic recombinant humanized monoclonal antibody: where it is, how it got there, and how it affects charge-based behavior.
    Quan C; Alcala E; Petkovska I; Matthews D; Canova-Davis E; Taticek R; Ma S
    Anal Biochem; 2008 Feb; 373(2):179-91. PubMed ID: 18158144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid identification of an antibody DNA construct rearrangement sequence variant by mass spectrometry.
    Scott RA; Rogers R; Balland A; Brady LJ
    MAbs; 2014; 6(6):1453-63. PubMed ID: 25484040
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of protein impurities and site-specific modifications using peptide mapping with liquid chromatography and data independent acquisition mass spectrometry.
    Xie H; Gilar M; Gebler JC
    Anal Chem; 2009 Jul; 81(14):5699-708. PubMed ID: 19518054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural characterization of a recombinant monoclonal antibody by electrospray time-of-flight mass spectrometry.
    Wang L; Amphlett G; Lambert JM; Blättler W; Zhang W
    Pharm Res; 2005 Aug; 22(8):1338-49. PubMed ID: 16078144
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of the in vitro and in vivo stability of a succinimide intermediate observed on a therapeutic IgG1 molecule.
    Ouellette D; Chumsae C; Clabbers A; Radziejewski C; Correia I
    MAbs; 2013; 5(3):432-44. PubMed ID: 23608772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inter-laboratory study of an optimised peptide mapping workflow using automated trypsin digestion for monitoring monoclonal antibody product quality attributes.
    Millán-Martín S; Jakes C; Carillo S; Buchanan T; Guender M; Kristensen DB; Sloth TM; Ørgaard M; Cook K; Bones J
    Anal Bioanal Chem; 2020 Oct; 412(25):6833-6848. PubMed ID: 32710279
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of nonenzymatic glycation on a monoclonal antibody.
    Brady LJ; Martinez T; Balland A
    Anal Chem; 2007 Dec; 79(24):9403-13. PubMed ID: 17985928
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A modified peptide mapping strategy for quantifying site-specific deamidation by electrospray time-of-flight mass spectrometry.
    Stroop SD
    Rapid Commun Mass Spectrom; 2007; 21(6):830-6. PubMed ID: 17294517
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of therapeutic proteins by cation exchange chromatography-mass spectrometry and top-down analysis.
    Shi RL; Xiao G; Dillon TM; Ricci MS; Bondarenko PV
    MAbs; 2020; 12(1):1739825. PubMed ID: 32292112
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry.
    Ponniah G; Nowak C; Kita A; Cheng G; Kori Y; Liu H
    Anal Biochem; 2016 Mar; 497():1-7. PubMed ID: 26747642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.