These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
475 related articles for article (PubMed ID: 24441433)
1. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics. Subramaniam C; Yasuda Y; Takeya S; Ata S; Nishizawa A; Futaba D; Yamada T; Hata K Nanoscale; 2014 Mar; 6(5):2669-74. PubMed ID: 24441433 [TBL] [Abstract][Full Text] [Related]
2. Microstructure and Thermal Conductivity of Carbon Nanotube Reinforced Cu Composites. Chen P; Zhang J; Shen Q; Luo G; Dai Y; Wang C; Li M; Zhang L J Nanosci Nanotechnol; 2017 Apr; 17(4):2447-452. PubMed ID: 29648750 [TBL] [Abstract][Full Text] [Related]
3. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects. Sun S; Mu W; Edwards M; Mencarelli D; Pierantoni L; Fu Y; Jeppson K; Liu J Nanotechnology; 2016 Aug; 27(33):335705. PubMed ID: 27383767 [TBL] [Abstract][Full Text] [Related]
4. Mechanically strengthened graphene-Cu composite with reduced thermal expansion towards interconnect applications. An Z; Li J; Kikuchi A; Wang Z; Jiang Y; Ono T Microsyst Nanoeng; 2019; 5():20. PubMed ID: 31123594 [TBL] [Abstract][Full Text] [Related]
5. Correction: Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics. Subramaniam C; Yasuda Y; Takeya S; Ata S; Nishizawa A; Futaba D; Yamada T; Hata K Nanoscale; 2019 Jan; 11(4):2089. PubMed ID: 30644937 [TBL] [Abstract][Full Text] [Related]
6. Copper/carbon nanotube composites: research trends and outlook. Sundaram RM; Sekiguchi A; Sekiya M; Yamada T; Hata K R Soc Open Sci; 2018 Nov; 5(11):180814. PubMed ID: 30564393 [TBL] [Abstract][Full Text] [Related]
7. Copper-based conductive composites with tailored thermal expansion. Della Gaspera E; Tucker R; Star K; Lan EH; Ju YS; Dunn B ACS Appl Mater Interfaces; 2013 Nov; 5(21):10966-74. PubMed ID: 24175870 [TBL] [Abstract][Full Text] [Related]
8. Nano-scale, planar and multi-tiered current pathways from a carbon nanotube-copper composite with high conductivity, ampacity and stability. Subramaniam C; Sekiguchi A; Yamada T; Futaba DN; Hata K Nanoscale; 2016 Feb; 8(7):3888-94. PubMed ID: 26486752 [TBL] [Abstract][Full Text] [Related]
9. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. Xu G; Zhao J; Li S; Zhang X; Yong Z; Li Q Nanoscale; 2011 Oct; 3(10):4215-9. PubMed ID: 21879118 [TBL] [Abstract][Full Text] [Related]
10. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962 [TBL] [Abstract][Full Text] [Related]
11. Graphene/Graphitized Polydopamine/Carbon Nanotube All-Carbon Ternary Composite Films with Improved Mechanical Properties and Through-Plane Thermal Conductivity. Zou R; Liu F; Hu N; Ning H; Gong Y; Wang S; Huang K; Jiang X; Xu C; Fu S; Li Y; Yan C ACS Appl Mater Interfaces; 2020 Dec; 12(51):57391-57400. PubMed ID: 33301313 [TBL] [Abstract][Full Text] [Related]
12. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation. Liu P; Fan Z; Mikhalchan A; Tran TQ; Jewell D; Duong HM; Marconnet AM ACS Appl Mater Interfaces; 2016 Jul; 8(27):17461-71. PubMed ID: 27322344 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices. Zhang G; Jiang S; Yao W; Liu C ACS Appl Mater Interfaces; 2016 Nov; 8(45):31202-31211. PubMed ID: 27791353 [TBL] [Abstract][Full Text] [Related]
14. Thermal properties of carbon nanotube-copper composites for thermal management applications. Chu K; Guo H; Jia C; Yin F; Zhang X; Liang X; Chen H Nanoscale Res Lett; 2010 Mar; 5(5):868-74. PubMed ID: 20672107 [TBL] [Abstract][Full Text] [Related]
15. Effects of Zr-Cu Alloy Powder on Microstructure and Properties of Cu Matrix Composite with Highly-Aligned Flake Graphite. Chen C; Cui Q; Yu C; Li P; Han W; Hao J Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33327630 [TBL] [Abstract][Full Text] [Related]
16. Ultrastrong Carbon Nanotubes-Copper Core-Shell Wires with Enhanced Electrical and Thermal Conductivities as High-Performance Power Transmission Cables. Chen H; Daneshvar F; Tu Q; Sue HJ ACS Appl Mater Interfaces; 2022 Dec; 14(50):56253-56267. PubMed ID: 36480699 [TBL] [Abstract][Full Text] [Related]
17. A Study of Silver Decoration on Carbon Nanotubes via Ultrasonic Chemical Synthesis and Their Reinforced Copper Matrix Composites. Tian D; Liu Y; Yu J; Zhao Q; Tao J; Wu Z; Zhang J; Fan Y; Liu Y; Li C; Yi J Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903767 [TBL] [Abstract][Full Text] [Related]
18. Hard Carbon Nanotube Sponges for Highly Efficient Cooling Yu W; Zhang G; Liu C; Fan S ACS Nano; 2020 Oct; 14(10):14091-14099. PubMed ID: 33044055 [TBL] [Abstract][Full Text] [Related]
19. A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity. Fu Y; Nabiollahi N; Wang T; Wang S; Hu Z; Carlberg B; Zhang Y; Wang X; Liu J Nanotechnology; 2012 Feb; 23(4):045304. PubMed ID: 22222357 [TBL] [Abstract][Full Text] [Related]
20. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity. Zou J; Liu D; Zhao J; Hou L; Liu T; Zhang X; Zhao Y; Zhu YT; Li Q ACS Appl Mater Interfaces; 2018 Mar; 10(9):8197-8204. PubMed ID: 29429334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]