BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24441626)

  • 1. Application of a redox gradostat reactor for assessing rhizosphere microorganism activity on lambda-cyhalothrin.
    Peacock TJ; Mikell AT; Moore MT; Smith S
    Bull Environ Contam Toxicol; 2014 Mar; 92(3):347-51. PubMed ID: 24441626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides.
    Bouldin JL; Farris JL; Moore MT; Smith S; Cooper CM
    Chemosphere; 2006 Nov; 65(6):1049-57. PubMed ID: 16709423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin.
    Shen X; Xu Z; Zhang X; Yang F
    Sci Total Environ; 2015 Nov; 532():415-9. PubMed ID: 26092290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms.
    Bouldin JL; Farris JL; Moore MT; Smith S; Stephens WW; Cooper CM
    Environ Toxicol; 2005 Oct; 20(5):487-98. PubMed ID: 16161102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistence behaviour of thiamethoxam and lambda cyhalothrin in transplanted paddy.
    Barik SR; Ganguly P; Kunda SK; Kole RK; Bhattacharyya A
    Bull Environ Contam Toxicol; 2010 Oct; 85(4):419-22. PubMed ID: 20703448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil.
    Weiss JV; Emerson D; Megonigal JP
    FEMS Microbiol Ecol; 2004 Apr; 48(1):89-100. PubMed ID: 19712434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foliar application of lambda-cyhalothrin modulates root exudate profile and the rhizosphere bacteria community of dioecious Populus cathayana.
    He Y; Zhu Z; Zhou Z; Lu T; Kumar A; Xia Z
    Environ Pollut; 2022 Nov; 313():120123. PubMed ID: 36087893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique Organic Matter and Microbial Properties in the Rhizosphere of a Wetland Soil.
    Kaplan DI; Xu C; Huang S; Lin Y; Tolić N; Roscioli-Johnson KM; Santschi PH; Jaffé PR
    Environ Sci Technol; 2016 Apr; 50(8):4169-77. PubMed ID: 27091553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH and ionic strength on exposure and toxicity of encapsulated lambda-cyhalothrin to Daphnia magna.
    Son J; Hooven LA; Harper B; Harper SL
    Sci Total Environ; 2015 Dec; 538():683-91. PubMed ID: 26327636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistence and dissipation of readymix formulations of insecticides in/on okra fruits.
    Nath P; Kumari B; Yadav PR; Kathpal TS
    Environ Monit Assess; 2005 Aug; 107(1-3):173-9. PubMed ID: 16418911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm.
    Chang J; Wang Y; Wang H; Li J; Xu P
    Chemosphere; 2016 Feb; 144():1351-7. PubMed ID: 26490429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk assessment of lambda-cyhalothrin on aquatic organisms in paddy field in China.
    Gu BG; Wang HM; Chen WL; Cai DJ; Shan ZJ
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):69-74. PubMed ID: 17379369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin.
    He LM; Troiano J; Wang A; Goh K
    Rev Environ Contam Toxicol; 2008; 195():71-91. PubMed ID: 18418954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of an eco-friendly o/w emulsion stabilized with amphiphilic sodium alginate derivatives on lambda-cyhalothrin adsorption-desorption on natural soil minerals.
    Peng Y; Xiao D; Yu G; Feng Y; Li J; Zhao X; Tang Y; Wang L; Zhang Q
    J Environ Sci (China); 2019 Apr; 78():230-238. PubMed ID: 30665641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A newly isolated Streptomyces rimosus strain capable of degrading deltamethrin as a pesticide in agricultural soil.
    Khajezadeh M; Abbaszadeh-Goudarzi K; Pourghadamyari H; Kafilzadeh F
    J Basic Microbiol; 2020 May; 60(5):435-443. PubMed ID: 32128846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An appraisal of methods for measurement of pesticide transformation in the groundwater zone.
    Leistra M; Smelt JH
    Pest Manag Sci; 2001 Apr; 57(4):333-40. PubMed ID: 11455812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density.
    Leistra M; Zweers AJ; Warinton JS; Crum SJ; Hand LH; Beltman WH; Maund SJ
    Pest Manag Sci; 2004 Jan; 60(1):75-84. PubMed ID: 14727744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pesticide fate in tropical wetlands of Brazil: an aquatic microcosm study under semi-field conditions.
    Laabs V; Wehrhan A; Pinto A; Dores E; Amelung W
    Chemosphere; 2007 Mar; 67(5):975-89. PubMed ID: 17166548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata.
    Singh S; Gupta R; Sharma S
    J Hazard Mater; 2015 Jun; 291():102-10. PubMed ID: 25791643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland.
    Moore MT; Cooper CM; Smith S; Cullum RF; Knight SS; Locke MA; Bennett ER
    Environ Pollut; 2009 Jan; 157(1):250-6. PubMed ID: 18789833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.