These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 2444186)

  • 1. Carbon dioxide storage capacity of endurance and sprint-trained athletes in exercise.
    Haffor AS; Bartels RL; Kirby TE; Hamlin RL; Kunz AL
    Arch Int Physiol Biochim; 1987 Jun; 95(2):81-90. PubMed ID: 2444186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Body carbon dioxide storage capacity in exercise.
    Jones NL; Jurkowski JE
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Apr; 46(4):811-5. PubMed ID: 457560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The differences in CO2 kinetics during incremental exercise among sprinters, middle, and long distance runners.
    Yano T
    Jpn J Physiol; 1987; 37(3):369-78. PubMed ID: 3119900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas exchange analysis of immediate CO2 storage at onset of exercise.
    Hughson RL; Inman MD
    Respir Physiol; 1985 Mar; 59(3):265-78. PubMed ID: 3922028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oxygen uptake - work-output relationship of runners during graded cycling exercise: sprinters vs. endurance runners.
    Niemelä K; Palatsi I; Takkunen J
    Br J Sports Med; 1980 Dec; 14(4):204-9. PubMed ID: 6778544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of metabolic adaptations between endurance- and sprint-trained athletes after an exhaustive exercise in two different calf muscles using a multi-slice
    Moll K; Gussew A; Nisser M; Derlien S; Krämer M; Reichenbach JR
    NMR Biomed; 2018 Apr; 31(4):e3889. PubMed ID: 29393546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological responses to maximal intermittent exercise: differences between endurance-trained runners and games players.
    Hamilton AL; Nevill ME; Brooks S; Williams C
    J Sports Sci; 1991; 9(4):371-82. PubMed ID: 1787554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of endurance training on excessive CO2 expiration due to lactate production in exercise.
    Hirakoba K; Maruyama A; Inaki M; Misaka K
    Eur J Appl Physiol Occup Physiol; 1992; 64(1):73-7. PubMed ID: 1735416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slower recovery rate of muscle oxygenation after sprint exercise in long-distance runners compared with that in sprinters and healthy controls.
    Nagasawa T
    J Strength Cond Res; 2013 Dec; 27(12):3360-6. PubMed ID: 23604001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immediate CO2 storage capacity at the onset of exercise.
    Yano T
    Jpn J Physiol; 1986; 36(6):1241-52. PubMed ID: 3110467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peak blood ammonia and lactate after submaximal, maximal and supramaximal exercise in sprinters and long-distance runners.
    Itoh H; Ohkuwa T
    Eur J Appl Physiol Occup Physiol; 1990; 60(4):271-6. PubMed ID: 2357982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between carbon dioxide sensitivity and sprint or endurance performance in young swimmers.
    McGurk SP; Blanksby BA; Anderson MJ
    Br J Sports Med; 1995 Jun; 29(2):129-33. PubMed ID: 7551759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 31P-MRS characterization of sprint and endurance trained athletes.
    Johansen L; Quistorff B
    Int J Sports Med; 2003 Apr; 24(3):183-9. PubMed ID: 12740736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of distance runners and sprinters to exercise in a hot environment.
    Irion GL
    Aviat Space Environ Med; 1987 Oct; 58(10):948-53. PubMed ID: 3675466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological characteristics of sprint and endurance Masters runners.
    Barnard RJ; Grimditch GK; Wilmore JH
    Med Sci Sports; 1979; 11(2):167-71. PubMed ID: 491875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A review.
    Abernethy PJ; Thayer R; Taylor AW
    Sports Med; 1990 Dec; 10(6):365-89. PubMed ID: 2291032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac hypertrophy and function in master endurance runners and sprinters.
    Child JS; Barnard RJ; Taw RL
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jul; 57(1):176-81. PubMed ID: 6236190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes.
    Nummela A; Rusko H
    Int J Sports Med; 1995 Nov; 16(8):522-7. PubMed ID: 8776206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg compressions improve ventilatory efficiency while reducing peak and post exercise blood lactate, but does not improve perceived exertion, exercise economy or aerobic exercise capacity in endurance-trained runners.
    Rivas E; Smith JD; Sherman NW
    Respir Physiol Neurobiol; 2017 Mar; 237():1-6. PubMed ID: 28013058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peak blood lactate after 400 m sprinting in sprinters and long-distance runners.
    Ohkuwa T; Miyamura M
    Jpn J Physiol; 1984; 34(3):553-6. PubMed ID: 6492499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.