BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 24441876)

  • 1. Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography.
    Nguyen TM; Song S; Arnal B; Wong EY; Huang Z; Wang RK; O'Donnell M
    J Biomed Opt; 2014 Jan; 19(1):16013. PubMed ID: 24441876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography.
    Nguyen TM; Arnal B; Song S; Huang Z; Wang RK; O'Donnell M
    J Biomed Opt; 2015 Jan; 20(1):016001. PubMed ID: 25554970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography.
    Nguyen TM; Song S; Arnal B; Huang Z; O'Donnell M; Wang RK
    Opt Lett; 2014 Feb; 39(4):838-41. PubMed ID: 24562220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography.
    Song S; Huang Z; Nguyen TM; Wong EY; Arnal B; O'Donnell M; Wang RK
    J Biomed Opt; 2013 Dec; 18(12):121509. PubMed ID: 24213539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography.
    Nguyen TM; Zorgani A; Lescanne M; Boccara C; Fink M; Catheline S
    J Biomed Opt; 2016 Dec; 21(12):126013. PubMed ID: 27999863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography.
    Li C; Guan G; Cheng X; Huang Z; Wang RK
    Opt Lett; 2012 Feb; 37(4):722-4. PubMed ID: 22344160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From supersonic shear wave imaging to full-field optical coherence shear wave elastography.
    Nahas A; Tanter M; Nguyen TM; Chassot JM; Fink M; Claude Boccara A
    J Biomed Opt; 2013 Dec; 18(12):121514. PubMed ID: 24357549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does group velocity always reflect elastic modulus in shear wave elastography?
    Pelivanov I; Gao L; Pitre J; Kirby M; Song S; Li D; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Jul; 24(7):1-11. PubMed ID: 31342691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanobomb optical coherence elastography.
    Liu CH; Nevozhay D; Schill A; Singh M; Das S; Nair A; Han Z; Aglyamov S; Larin KV; Sokolov KV
    Opt Lett; 2018 May; 43(9):2006-2009. PubMed ID: 29714732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography.
    Manapuram RK; Aglyamov SR; Monediado FM; Mashiatulla M; Li J; Emelianov SY; Larin KV
    J Biomed Opt; 2012 Oct; 17(10):100501. PubMed ID: 23223976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical micro-scale mapping of dynamic biomechanical tissue properties.
    Liang X; Oldenburg AL; Crecea V; Chaney EJ; Boppart SA
    Opt Express; 2008 Jul; 16(15):11052-65. PubMed ID: 18648419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study.
    Han Z; Li J; Singh M; Wu C; Liu CH; Wang S; Idugboe R; Raghunathan R; Sudheendran N; Aglyamov SR; Twa MD; Larin KV
    Phys Med Biol; 2015 May; 60(9):3531-47. PubMed ID: 25860076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
    Lan G; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2021 Jan; 98(1):58-63. PubMed ID: 33394932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial resolution in dynamic optical coherence elastography.
    Kirby MA; Zhou K; Pitre JJ; Gao L; Li D; Pelivanov I; Song S; Li C; Huang Z; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Sep; 24(9):1-16. PubMed ID: 31535538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustomotive optical coherence elastography for measuring material mechanical properties.
    Liang X; Orescanin M; Toohey KS; Insana MF; Boppart SA
    Opt Lett; 2009 Oct; 34(19):2894-6. PubMed ID: 19794759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.
    Song S; Le NM; Huang Z; Shen T; Wang RK
    Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of mechanical contrast in optical coherence elastography.
    Kennedy KM; Ford C; Kennedy BF; Bush MB; Sampson DD
    J Biomed Opt; 2013 Dec; 18(12):121508. PubMed ID: 24220762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-resolved acoustic radiation force optical coherence elastography.
    Qi W; Chen R; Chou L; Liu G; Zhang J; Zhou Q; Chen Z
    J Biomed Opt; 2012 Nov; 17(11):110505. PubMed ID: 23123971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.