These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 244419)
1. Effect of polyamines on isoleucyl-tRNA formation by rat-liver isoleucyl-tRNA synthetase. Igarashi K; Eguchi K; Tanaka M; Hirose S Eur J Biochem; 1978 Jan; 82(1):301-7. PubMed ID: 244419 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of aminoacylation of tRNA. Influence of spermine on the kinetics of aminoacyl-tRNA synthetases by isoleucyl- and valyl-tRNA synthetases from Mycobacterium smegmatis. Natarajan V; Gopinathan KP Biochim Biophys Acta; 1981 Jun; 654(1):94-101. PubMed ID: 6912073 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of spermine stimulation of rat-liver isoleucyl-tRNA formation. Igarashi K; Eguchi K; Tanaka M; Hirose S Eur J Biochem; 1978 Sep; 90(1):13-9. PubMed ID: 710414 [TBL] [Abstract][Full Text] [Related]
4. Aminoacyl transfer RNA formation. V. Effect of ethylenediaminetetraacetate on isoleucyl transfer RNA formation stimulated by either spermine or Mg2+. Takeda Y; Onishi T J Biol Chem; 1975 May; 250(10):3878-82. PubMed ID: 805133 [TBL] [Abstract][Full Text] [Related]
5. Polyamine prevention of inhibition of rat liver isoleucyl-tRNA formation by poly(G), poly(I) or ribosomes. Igarashi K; Tanaka M; Eguchi K; Hirose S Biochem Biophys Res Commun; 1978 Jul; 83(1):274-80. PubMed ID: 358977 [No Abstract] [Full Text] [Related]
6. Characterization of aminoacyl transfer ribonucleic acid formation stimulated by polyamines. Takeda Y; Matsuzaki K; Igarashi K J Bacteriol; 1972 Jul; 111(1):1-6. PubMed ID: 4591475 [TBL] [Abstract][Full Text] [Related]
7. Necessity of polyamines for maximum isoleucyl-tRNA formation in a rat liver cell-free system. Igarashi K; Takahashi K; Hirose S Biochem Biophys Res Commun; 1974 Sep; 60(1):234-40. PubMed ID: 4424262 [No Abstract] [Full Text] [Related]
8. The mechanism of aminoacylation of transfer ribonucleic acid. Reactivity of enzyme-bound isoleucyl adenylate. Lõvgren TN; Heinonen J; Loftfield RB J Biol Chem; 1975 May; 250(10):3854-60. PubMed ID: 1092679 [TBL] [Abstract][Full Text] [Related]
9. The role of polyamines in the aminoacyl transfer ribonucleic acid synthetase reactions. Demonstration of the requirement for magnesium ion and a secondary stimulatory effect of spermine. Santi DV; Webster RW J Biol Chem; 1975 May; 250(10):3874-7. PubMed ID: 165187 [TBL] [Abstract][Full Text] [Related]
10. Aminoacyl transfer RNA formation. Binding of cations to transfer RNA and its role in aminoacyl transfer RNA formation. Takeda Y; Ohnishi T; Ogiso Y J Biochem; 1976 Sep; 80(3):463-9. PubMed ID: 789364 [TBL] [Abstract][Full Text] [Related]
11. Aminoacyl transfer RNA formation. VII. Lack of correlation between aminoacylation and PPi-ATP exchange catalyzed by isoleucyl-tRNA synthetase of Escherichia coli in the presence of various divalent cations. Takeda Y; Ohnishi T; Ogiso Y J Biochem; 1976 Sep; 80(3):471-5. PubMed ID: 185200 [TBL] [Abstract][Full Text] [Related]
12. Increase in fidelity of rat liver Ile-tRNA formation by both spermine and the aminoacyl-tRNA synthetase complex. Kusama-Eguchi K; Irisawa M; Watanabe S; Watanabe K; Igarashi K Arch Biochem Biophys; 1991 Aug; 288(2):495-9. PubMed ID: 1898044 [TBL] [Abstract][Full Text] [Related]
13. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs. Freist W; Sternbach H; Cramer F Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973 [TBL] [Abstract][Full Text] [Related]
14. Isoleucyl-tRNA synthetase from bakers' yeast: variable discrimination between tRNAIle and tRNAVal and different pathways of cognate and noncognate aminoacylation under standard conditions, in the presence of pyrophosphatase, elongation factor Tu-GTP complex, and spermine. Freist W; Sternbach H Biochemistry; 1984 Nov; 23(24):5742-52. PubMed ID: 6151853 [TBL] [Abstract][Full Text] [Related]
15. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli. Airas RK Eur J Biochem; 1996 Aug; 240(1):223-31. PubMed ID: 8797857 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the isoleucyl-tRNA synthetase reaction by total rate equations. Magnesium and spermidine in the tRNA kinetics. Airas RK Eur J Biochem; 1992 Dec; 210(2):443-50. PubMed ID: 1459129 [TBL] [Abstract][Full Text] [Related]
17. Spermine stimulates the threonyl-tRNA formation in rat liver. Aoyama H Chem Biol Interact; 1990; 74(1-2):33-43. PubMed ID: 2108809 [TBL] [Abstract][Full Text] [Related]
18. Proceedings: Effect of polyamines on aminoacylation of tRNA from Phasaeolus vulgaris. de Varebeke PJ Arch Int Physiol Biochim; 1974 Oct; 82(4):775. PubMed ID: 4141446 [No Abstract] [Full Text] [Related]
19. Reconfirmation of replacement of magnesium ion requirement by polyamines in isoleucyl-tRNA formation in Escherichia coli. Takeda Y; Ogiso Y FEBS Lett; 1976 Jul; 66(2):332-5. PubMed ID: 782918 [No Abstract] [Full Text] [Related]
20. On the roles of magnesium and spermidine in the isoleucyl-tRNA synthetase reaction. Analysis of the reaction mechanism by total rate equations. Airas RK Eur J Biochem; 1990 Sep; 192(2):401-9. PubMed ID: 2209594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]