These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24441985)

  • 1. A nanophotonic solar thermophotovoltaic device.
    Lenert A; Bierman DM; Nam Y; Chan WR; Celanović I; Soljačić M; Wang EN
    Nat Nanotechnol; 2014 Feb; 9(2):126-30. PubMed ID: 24441985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 'Squeezing' near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion.
    Karalis A; Joannopoulos JD
    Sci Rep; 2016 Jul; 6():28472. PubMed ID: 27363522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting.
    Chang CC; Kort-Kamp WJM; Nogan J; Luk TS; Azad AK; Taylor AJ; Dalvit DAR; Sykora M; Chen HT
    Nano Lett; 2018 Dec; 18(12):7665-7673. PubMed ID: 30395478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semitransparent thermophotovoltaics for efficient utilization of moderate temperature thermal radiation.
    Lenert A; Burger T; Roy-Layinde B; Lentz R; Berquist ZJ; Forrest SR
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2215977119. PubMed ID: 36409918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering.
    Omair Z; Scranton G; Pazos-Outón LM; Xiao TP; Steiner MA; Ganapati V; Peterson PF; Holzrichter J; Atwater H; Yablonovitch E
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15356-15361. PubMed ID: 31311864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophotovoltaic efficiency of 40.
    LaPotin A; Schulte KL; Steiner MA; Buznitsky K; Kelsall CC; Friedman DJ; Tervo EJ; France RM; Young MR; Rohskopf A; Verma S; Wang EN; Henry A
    Nature; 2022 Apr; 604(7905):287-291. PubMed ID: 35418635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems.
    Abbas MA; Kim J; Rana AS; Kim I; Rehman B; Ahmad Z; Massoud Y; Seong J; Badloe T; Park K; Mehmood MQ; Zubair M; Rho J
    Nanoscale; 2022 May; 14(17):6425-6436. PubMed ID: 35416207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superlattice photonic crystal as broadband solar absorber for high temperature operation.
    Rinnerbauer V; Shen Y; Joannopoulos JD; Soljačić M; Schäffler F; Celanovic I
    Opt Express; 2014 Dec; 22 Suppl 7():A1895-906. PubMed ID: 25607503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-perfect photon utilization in an air-bridge thermophotovoltaic cell.
    Fan D; Burger T; McSherry S; Lee B; Lenert A; Forrest SR
    Nature; 2020 Oct; 586(7828):237-241. PubMed ID: 32958951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective photon recycling in solar thermophotovoltaics using a confined cuboid emitter.
    Kohiyama A; Shimizu M; Konno K; Furuhashi T; Yugami H
    Opt Express; 2020 Dec; 28(26):38567-38578. PubMed ID: 33379424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.
    St-Gelais R; Bhatt GR; Zhu L; Fan S; Lipson M
    ACS Nano; 2017 Mar; 11(3):3001-3009. PubMed ID: 28287714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification.
    Arpin KA; Losego MD; Cloud AN; Ning H; Mallek J; Sergeant NP; Zhu L; Yu Z; Kalanyan B; Parsons GN; Girolami GS; Abelson JR; Fan S; Braun PV
    Nat Commun; 2013; 4():2630. PubMed ID: 24129680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Chip Near-Field Thermophotovoltaic Device Integrating a Thin-Film Thermal Emitter and Photovoltaic Cell.
    Inoue T; Koyama T; Kang DD; Ikeda K; Asano T; Noda S
    Nano Lett; 2019 Jun; 19(6):3948-3952. PubMed ID: 31137936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Luminescent Solar Power-PV/Thermal Hybrid Electricity Generation for Cost-Effective Dispatchable Solar Energy.
    Haviv S; Revivo N; Kruger N; Manor A; Khachatryan B; Shustov M; Rotschild C
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36040-36045. PubMed ID: 32691582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.
    Thomas NH; Chen Z; Fan S; Minnich AJ
    Sci Rep; 2017 Jul; 7(1):5362. PubMed ID: 28706230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring high-temperature radiation and the resurrection of the incandescent source.
    Ilic O; Bermel P; Chen G; Joannopoulos JD; Celanovic I; Soljačić M
    Nat Nanotechnol; 2016 Apr; 11(4):320-4. PubMed ID: 26751172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient planar heterojunction perovskite solar cells by vapour deposition.
    Liu M; Johnston MB; Snaith HJ
    Nature; 2013 Sep; 501(7467):395-8. PubMed ID: 24025775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Selectivity Planar Thermal Emitter with a Stable Temperature over 1400 K for a Thermophotovoltaic System.
    Wang J; Wu Z; Liu Y; Hou S; Qiao Y; Tang Z; Mao J; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49123-49131. PubMed ID: 37842846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate.
    Inoue T; Watanabe K; Asano T; Noda S
    Opt Express; 2018 Jan; 26(2):A192-A208. PubMed ID: 29401929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.