BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 2444209)

  • 1. Hepatic phosphoribosyl pyrophosphate concentration. Regulation by the oxidative pentose phosphate pathway and cellular energy status.
    Kunjara S; Sochor M; Ali SA; Greenbaum AL; McLean P
    Biochem J; 1987 May; 244(1):101-8. PubMed ID: 2444209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoribosyl pyrophosphate and phosphoribosyl pyrophosphate synthetase in rat mammary gland. Changes in the lactation cycle and effects of diabetes, insulin and phenazine methosulphate.
    Kunjara S; Sochor M; Salih N; McLean P; Greenbaum AL
    Biochem J; 1986 Sep; 238(2):553-9. PubMed ID: 2432883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentration of phosphoribosyl pyrophosphate in the kidney during development and in experimental diabetic hypertrophy.
    Kunjara S; Sochor M; Adeoya A; McLean P; Greenbaum AL
    Biochem J; 1986 Mar; 234(3):579-85. PubMed ID: 2424432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in pathways of pentose phosphate formation in relation to phosphoribosyl pyrophosphate synthesis in the developing rat kidney. Effects of glucose concentration and electron acceptors.
    Sochor M; Kunjara S; Greenbaum AL; McLean P
    J Dev Physiol; 1989 Sep; 12(3):135-43. PubMed ID: 2483165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aspects of the regulation of hepatic phosphoribosyl pyrophosphate formation in the obese (ob/ob) mouse: relationship to the pentose phosphate pathway.
    Kunjara S; Sochor M; Greenbaum AL; McLean P
    Biochem Med Metab Biol; 1993 Apr; 49(2):217-27. PubMed ID: 7683478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration of phosphoribosyl pyrophosphate in renal hypertrophy. Contrasting effects of early diabetes and unilateral nephrectomy.
    Kunjara S; Sochor M; Greenbaum AL; McLean P
    Biochem J; 1986 Oct; 239(1):241-4. PubMed ID: 2432888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative nd non-oxidative reactions and related enzymes of the cycle in adipose tissue.
    Gumaa KA; Novello F; McLean P
    Biochem J; 1969 Sep; 114(2):253-64. PubMed ID: 5810081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoribosyl pyrophosphate formation in the rat adrenal gland in relation to adrenal growth in experimental diabetes.
    Kunjara S; Sochor M; Ahmed S; Greenbaum AL; McLean P
    Diabetes; 1992 Nov; 41(11):1429-35. PubMed ID: 1383069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of de novo purine synthesis in human and rat tissue: role of oxidative pentose phosphate pathway activity and of ribose-5-phosphate and phosphoribosylpyrophosphate availability.
    Sperling O; Boer P; Lipstein B; Kupfer B; Brosh S; Zoref E; Bashkin P; de Vries A
    Adv Exp Med Biol; 1977; 76A():481-7. PubMed ID: 193377
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of a somatostatin analogue (SMS 201-995, Sandostatin) on the concentration of phosphoribosyl pyrophosphate and the activity of the pentose phosphate pathway in the early renal hypertrophy of experimental diabetes in the rat.
    Steer KA; Sochor M; Kunjara S; Doepfner W; McLean P
    Biochem Med Metab Biol; 1988 Apr; 39(2):226-33. PubMed ID: 2454125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of thyroid hormone deficiency on the distribution of hepatic metabolites and control of pathways of carbohydrate metabolism in liver and adipose tissue of the rat.
    Baquer NZ; Cascales M; McLean P; Greenbaum AL
    Eur J Biochem; 1976 Sep; 68(2):403-13. PubMed ID: 976265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative and non-oxidative reactions of the cycle in liver.
    Novello F; Gumaa JA; McLean P
    Biochem J; 1969 Mar; 111(5):713-25. PubMed ID: 5791534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ribose 5-phosphate and 5-phosphoribosyl-1-pyrophosphate availability on de novo synthesis of purine nucleotides in rat liver slices.
    Boer P; Lipstein B; De Vries A; Sperling O
    Biochim Biophys Acta; 1976 Apr; 432(1):10-7. PubMed ID: 1260047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The content of pentose-cycle intermediates in liver in starved, fed ad libitum and meal-fed rats.
    Casazza JP; Veech RL
    Biochem J; 1986 Jun; 236(3):635-41. PubMed ID: 3790084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phosphogluconate pathway and synthesis of 5-phosphoribosyl-1-pyrophosphate in human fibroblasts.
    Raivio KO; Lazar CS; Krumholz HR; Becker MA
    Biochim Biophys Acta; 1981 Nov; 678(1):51-7. PubMed ID: 6171305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of 5-phosphoribosyl 1-pyrophosphate and ADP on the nonoxidative pentose phosphate pathway activity.
    Hosomi S; Tara H; Terada T; Mizoguchi T
    Biochem Med Metab Biol; 1989 Aug; 42(1):52-9. PubMed ID: 2476163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superactivity of human phosphoribosyl pyrophosphate synthetase due to altered regulation by nucleotide inhibitors and inorganic phosphate.
    Becker MA; Losman MJ; Wilson J; Simmonds HA
    Biochim Biophys Acta; 1986 Jun; 882(2):168-76. PubMed ID: 2423135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A possible role for 5-phosphoribosyl 1-pyrophosphate in the stimulation of uterine purine nucleotide synthesis in response to oestradiol-17 .
    Oliver JM
    Biochem J; 1972 Jul; 128(4):771-7. PubMed ID: 4344697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of phosphoribosylpyrophosphate and ribose-5-phosphate concentration and generation in fibroblasts from patients with gout and purine overproduction.
    Becker MA
    J Clin Invest; 1976 Feb; 57(2):308-18. PubMed ID: 176178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-diet-induced elevation of 5-phosphoribosyl 1-diphosphate concentrations in mouse liver associated with increased syntheses of various nucleotides and the possible involvement of glucagon.
    Chikenji T; Asai T; Tatibana M
    Biochim Biophys Acta; 1984 Nov; 802(2):274-81. PubMed ID: 6208943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.