These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24442198)

  • 1. Development of tuberous roots and sugar accumulation as related to invertase activity and mineral nutrition.
    Ricardo CP; Sovia D
    Planta; 1974 Mar; 118(1):43-55. PubMed ID: 24442198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkaline β-fructofuranosidases of tuberous roots: Possible physiological function.
    Ricardo CP
    Planta; 1974 Dec; 118(4):333-43. PubMed ID: 24442377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers.
    Zrenner R; Schüler K; Sonnewald U
    Planta; 1996; 198(2):246-52. PubMed ID: 8580777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 2.5-kb insert eliminates acid soluble invertase isozyme II transcript in carrot (Daucus carota L.) roots, causing high sucrose accumulation.
    Yau YY; Simon PW
    Plant Mol Biol; 2003 Sep; 53(1-2):151-62. PubMed ID: 14756313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Phenotypic Characteristics and Sucrose Metabolism in the Roots of
    Kang JN; Kim JS; Lee SM; Won SY; Seo MS; Kwon SJ
    Front Plant Sci; 2021; 12():716782. PubMed ID: 34745157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning.
    Tang GQ; Lüscher M; Sturm A
    Plant Cell; 1999 Feb; 11(2):177-89. PubMed ID: 9927637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin.
    Wiberley-Bradford AE; Busse JS; Jiang J; Bethke PC
    BMC Res Notes; 2014 Nov; 7():801. PubMed ID: 25399251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal organization of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase.
    Flemetakis E; Efrose RC; Ott T; Stedel C; Aivalakis G; Udvardi MK; Katinakis P
    Plant Mol Biol; 2006 Sep; 62(1-2):53-69. PubMed ID: 16897473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in invertase activities and reducing sugar content in sweetpotato stored at different temperatures.
    Huang YH; Picha DH; Kilili AW; Johnson CE
    J Agric Food Chem; 1999 Dec; 47(12):4927-31. PubMed ID: 10606553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymes of sucrose breakdown in soybean nodules: alkaline invertase.
    Morell M; Copeland L
    Plant Physiol; 1984 Apr; 74(4):1030-4. PubMed ID: 16663498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid and alkaline invertases in suspension cultures of sugar beet cells.
    Masuda H; Takahashi T; Sugawara S
    Plant Physiol; 1988 Jan; 86(1):312-7. PubMed ID: 16665887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival.
    Zeng Y; Wu Y; Avigne WT; Koch KE
    Plant Physiol; 1999 Oct; 121(2):599-608. PubMed ID: 10517852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulla carnosa modulates root invertase activity in response to the inhibition of long-distance sucrose transport under magnesium deficiency.
    Farhat N; Smaoui A; Maurousset L; Porcheron B; Lemoine R; Abdelly C; Rabhi M
    Plant Biol (Stuttg); 2016 Nov; 18(6):1031-1037. PubMed ID: 27488230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the
    Veillet F; Gaillard C; Coutos-Thévenot P; La Camera S
    Front Plant Sci; 2016; 7():1899. PubMed ID: 28066461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of enzyme activities and gene expressions in sucrose metabolism in relation to sugar accumulation and composition in the aril of Litchi chinensis Sonn.
    Yang Z; Wang T; Wang H; Huang X; Qin Y; Hu G
    J Plant Physiol; 2013 May; 170(8):731-40. PubMed ID: 23499454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose uptake, invertase localization and gene expression in developing fruit of Lycopersicon esculentum and the sucrose-accumulating Lycopersicon hirsutum.
    Miron D; Petreikov M; Carmi N; Shen S; Levin I; Granot D; Zamski E; Schaffer AA
    Physiol Plant; 2002 May; 115(1):35-47. PubMed ID: 12010465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Enzymic Studies of Sucrose Metabolism in the Taproots and Fibrous Roots of Beta vulgaris L.
    Silvius JE; Snyder FW
    Plant Physiol; 1979 Dec; 64(6):1070-3. PubMed ID: 16661094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Acid Invertase Gene Controls Sugar Composition in Tomato (Lycopersicon) Fruit.
    Klann EM; Chetelat RT; Bennett AB
    Plant Physiol; 1993 Nov; 103(3):863-870. PubMed ID: 12231984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization and functional analysis of sucrose-cleaving enzymes in carrot (Daucus carota L.).
    Sturm A
    J Exp Bot; 1996 Aug; 47 Spec No():1187-92. PubMed ID: 21245247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian and developmental regulation of vacuolar invertase expression in petioles of sugar beet plants.
    González MC; Roitsch T; Cejudo FJ
    Planta; 2005 Oct; 222(2):386-95. PubMed ID: 16052318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.