BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 24442322)

  • 1. The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli.
    Goodman CA
    Rev Physiol Biochem Pharmacol; 2014; 166():43-95. PubMed ID: 24442322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of mTORC1 in mechanically induced increases in translation and skeletal muscle mass.
    Goodman CA
    J Appl Physiol (1985); 2019 Aug; 127(2):581-590. PubMed ID: 30676865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise: Implications for Muscle Hypertrophy.
    Gonzalez AM; Hoffman JR; Stout JR; Fukuda DH; Willoughby DS
    Sports Med; 2016 May; 46(5):671-85. PubMed ID: 26666743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy.
    You JS; McNally RM; Jacobs BL; Privett RE; Gundermann DM; Lin KH; Steinert ND; Goodman CA; Hornberger TA
    FASEB J; 2019 Mar; 33(3):4021-4034. PubMed ID: 30509128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance.
    Bond P
    J Int Soc Sports Nutr; 2016; 13():8. PubMed ID: 26937223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise and the Regulation of Skeletal Muscle Hypertrophy.
    McGlory C; Phillips SM
    Prog Mol Biol Transl Sci; 2015; 135():153-73. PubMed ID: 26477914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine protects muscle cells from wasting in vitro in an mTORC1-dependent and NO-independent manner.
    Ham DJ; Caldow MK; Lynch GS; Koopman R
    Amino Acids; 2014 Dec; 46(12):2643-52. PubMed ID: 25096520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1.
    Kathage B; Gehlert S; Ulbricht A; Lüdecke L; Tapia VE; Orfanos Z; Wenzel D; Bloch W; Volkmer R; Fleischmann BK; Fürst DO; Höhfeld J
    Biochim Biophys Acta Mol Cell Res; 2017 Jan; 1864(1):62-75. PubMed ID: 27756573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive activation of CaMKKα signaling is sufficient but not necessary for mTORC1 activation and growth in mouse skeletal muscle.
    Ferey JL; Brault JJ; Smith CA; Witczak CA
    Am J Physiol Endocrinol Metab; 2014 Oct; 307(8):E686-94. PubMed ID: 25159322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of mTORC1 signaling and protein synthesis in human muscle following blood flow restriction exercise is inhibited by rapamycin.
    Gundermann DM; Walker DK; Reidy PT; Borack MS; Dickinson JM; Volpi E; Rasmussen BB
    Am J Physiol Endocrinol Metab; 2014 May; 306(10):E1198-204. PubMed ID: 24691032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle protein synthesis, mTORC1/MAPK/Hippo signaling, and capillary density are altered by blocking of myostatin and activins.
    Hulmi JJ; Oliveira BM; Silvennoinen M; Hoogaars WM; Ma H; Pierre P; Pasternack A; Kainulainen H; Ritvos O
    Am J Physiol Endocrinol Metab; 2013 Jan; 304(1):E41-50. PubMed ID: 23115080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanotransduction pathways in skeletal muscle hypertrophy.
    Yamada AK; Verlengia R; Bueno Junior CR
    J Recept Signal Transduct Res; 2012 Feb; 32(1):42-4. PubMed ID: 22171534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid sensing and activation of mechanistic target of rapamycin complex 1: implications for skeletal muscle.
    Ham DJ; Lynch GS; Koopman R
    Curr Opin Clin Nutr Metab Care; 2016 Jan; 19(1):67-73. PubMed ID: 26560525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle.
    Hornberger TA
    Int J Biochem Cell Biol; 2011 Sep; 43(9):1267-76. PubMed ID: 21621634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced REDD1 expression contributes to activation of mTORC1 following electrically induced muscle contraction.
    Gordon BS; Steiner JL; Lang CH; Jefferson LS; Kimball SR
    Am J Physiol Endocrinol Metab; 2014 Oct; 307(8):E703-11. PubMed ID: 25159324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms.
    Goodman CA; Hornberger TA; Robling AG
    Bone; 2015 Nov; 80():24-36. PubMed ID: 26453495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle.
    Ogasawara R; Sato K; Matsutani K; Nakazato K; Fujita S
    Am J Physiol Endocrinol Metab; 2014 May; 306(10):E1155-62. PubMed ID: 24691029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy modulates amino acid signaling network in myotubes: differential effects on mTORC1 pathway and the integrated stress response.
    Yu X; Long YC
    FASEB J; 2015 Feb; 29(2):394-407. PubMed ID: 25376834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.
    Gao S; Carson JA
    Am J Physiol Cell Physiol; 2016 Jan; 310(1):C66-79. PubMed ID: 26491045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular signaling of amino acids towards mTORC1 activation in impaired human leucine catabolism.
    Schriever SC; Deutsch MJ; Adamski J; Roscher AA; Ensenauer R
    J Nutr Biochem; 2013 May; 24(5):824-31. PubMed ID: 22898570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.