These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24442330)

  • 21. Log energy entropy-based EEG classification with multilayer neural networks in seizure.
    Aydin S; Saraoğlu HM; Kara S
    Ann Biomed Eng; 2009 Dec; 37(12):2626-30. PubMed ID: 19757057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Permutation Entropy Does Not Track the Electroencephalogram-Related Manifestations of Paradoxical Excitation During Propofol-Induced Loss of Responsiveness: Results From a Prospective Observational Cohort Study.
    Ostertag J; Zanner R; Schneider G; Kreuzer M
    Anesth Analg; 2024 Feb; ():. PubMed ID: 38412114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time depth of anaesthesia assessment using strong analytical signal transform technique.
    Palendeng ME; Wen P; Li Y
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):723-30. PubMed ID: 25412884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using Relevance Feedback to Distinguish the Changes in EEG During Different Absence Seizure Phases.
    Li J; Liu X; Ouyang G
    Clin EEG Neurosci; 2016 Jul; 47(3):211-9. PubMed ID: 25245133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Entropy of EEG during anaesthetic induction: a comparative study with propofol or nitrous oxide as sole agent.
    Anderson RE; Jakobsson JG
    Br J Anaesth; 2004 Feb; 92(2):167-70. PubMed ID: 14722164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spinal cord stimulation modulates complexity of neural activities in patients with disorders of consciousness.
    Wang Y; Bai Y; Xia X; Yang Y; He J; Li X
    Int J Neurosci; 2020 Jul; 130(7):662-670. PubMed ID: 31847650
    [No Abstract]   [Full Text] [Related]  

  • 27. Tracking Electroencephalographic Changes Using Distributions of Linear Models: Application to Propofol-Based Depth of Anesthesia Monitoring.
    Kuhlmann L; Manton JH; Heyse B; Vereecke HE; Lipping T; Struys MM; Liley DT
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):870-881. PubMed ID: 27323352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the depth of hypnosis of xenon anaesthesia with the EEG.
    Stuttmann R; Schultz A; Kneif T; Krauss T; Schultz B
    Biomed Tech (Berl); 2010 Apr; 55(2):77-82. PubMed ID: 20180643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated estimation of sedation depth from the EEG.
    Greene BR; Mahon P; McNamara B; Boylan GB; Shorten G
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3188-91. PubMed ID: 18002673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring the depth of anesthesia using entropy features and an artificial neural network.
    Shalbaf R; Behnam H; Sleigh JW; Steyn-Ross A; Voss LJ
    J Neurosci Methods; 2013 Aug; 218(1):17-24. PubMed ID: 23567809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Bispectral Index and Entropy values with electroencephalogram during surgical anaesthesia with sevoflurane.
    Aho AJ; Kamata K; Jäntti V; Kulkas A; Hagihira S; Huhtala H; Yli-Hankala A
    Br J Anaesth; 2015 Aug; 115(2):258-66. PubMed ID: 26137969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring consciousness: the current status of EEG-based depth of anaesthesia monitors.
    Voss L; Sleigh J
    Best Pract Res Clin Anaesthesiol; 2007 Sep; 21(3):313-25. PubMed ID: 17900011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of auditory evoked potentials and spectral EEG in the ability to detect marked sevoflurane concentration alterations and clinical events.
    Enlund M; Jansson P
    Ups J Med Sci; 2007; 112(2):221-9. PubMed ID: 17578822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation of EEG spectral entropy with regional cerebral blood flow during sevoflurane and propofol anaesthesia.
    Maksimow A; Kaisti K; Aalto S; Mäenpää M; Jääskeläinen S; Hinkka S; Martens S; Särkelä M; Viertiö-Oja H; Scheinin H
    Anaesthesia; 2005 Sep; 60(9):862-9. PubMed ID: 16115246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Approximate entropy-based epileptic EEG detection using artificial neural networks.
    Srinivasan V; Eswaran C; Sriraam N
    IEEE Trans Inf Technol Biomed; 2007 May; 11(3):288-95. PubMed ID: 17521078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic clustering for vigilance analysis based on EEG.
    Shi LC; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():54-7. PubMed ID: 19162592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peak and averaged bicoherence for different EEG patterns during general anaesthesia.
    Pritchett S; Zilberg E; Xu ZM; Myles P; Brown I; Burton D
    Biomed Eng Online; 2010 Nov; 9():76. PubMed ID: 21092128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Connectivity analysis of EEG under drug therapy.
    Alonso JF; Mañanas MA; Romero S; Riba J; Barbanoj MJ; Hoyer D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6188-91. PubMed ID: 18003434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of entropy and complexity measures for the assessment of depth of sedation.
    Ferenets R; Lipping T; Anier A; Jäntti V; Melto S; Hovilehto S
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1067-77. PubMed ID: 16761834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of depth of anesthesia with Hilbert-Huang spectral entropy.
    Li X; Li D; Liang Z; Voss LJ; Sleigh JW
    Clin Neurophysiol; 2008 Nov; 119(11):2465-75. PubMed ID: 18812265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.