These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24442363)

  • 1. Photosynthetic and leaf morphological characteristics in Leucaena leucocephala as affected by growth under different neutral shade levels.
    Perry MH; Friend DJ; Yamamoto HY
    Photosynth Res; 1986 Jan; 9(3):305-16. PubMed ID: 24442363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis).
    Hieke S; Menzel CM; Lüdders P
    Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating Light Acclimation Parameters of Cucumber Leaves Using Time-Weighted Averages of Daily Photosynthetic Photon Flux Density.
    Yu L; Fujiwara K; Matsuda R
    Front Plant Sci; 2021; 12():809046. PubMed ID: 35211135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions.
    Chandra S; Lata H; Khan IA; Elsohly MA
    Physiol Mol Biol Plants; 2008 Oct; 14(4):299-306. PubMed ID: 23572895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas exchange characteristics of mangosteen (Garcinia mangostana L.) leaves.
    Wiebel J; Eamus D; Chacko EK; Downton WJ; Lüdders P
    Tree Physiol; 1993 Jul; 13(1):55-69. PubMed ID: 14969901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Only Extreme Fluctuations in Light Levels Reduce Lettuce Growth Under Sole Source Lighting.
    Bhuiyan R; van Iersel MW
    Front Plant Sci; 2021; 12():619973. PubMed ID: 33584773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Net CO2 assimilation of taro and cocoyam as affected by shading and leaf age.
    Schaffer B; O'Hair SK
    Photosynth Res; 1987 Jan; 11(3):245-51. PubMed ID: 24435540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of photosynthetic photon flux density on growth and transpiration in seedlings of Fagus sylvatica.
    Welander NT; Ottosson B
    Tree Physiol; 1997 Feb; 17(2):133-40. PubMed ID: 14759883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light availability and photosynthesis of Pseudotsuga menziesii seedlings grown in the open and in the forest understory.
    Chen HY; Klinka K
    Tree Physiol; 1997 Jan; 17(1):23-9. PubMed ID: 14759910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of growth, photosynthesis, and leaf conductance to white light irradiance and end-of-day red and far-red pulses in Fuchsia magellanica Lam.
    Aphalo PJ; Gibson D; Di Benedetto AH
    New Phytol; 1991 Mar; 117(3):461-471. PubMed ID: 33874320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves.
    Lichtenthaler HK; Buschmann C; Döll M; Fietz HJ; Bach T; Kozel U; Meier D; Rahmsdorf U
    Photosynth Res; 1981 Jun; 2(2):115-41. PubMed ID: 24470202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and photosynthetic characteristics of sweet potato (Ipomoea batatas) leaves grown under natural sunlight with supplemental LED lighting in a tropical greenhouse.
    He J; Qin L
    J Plant Physiol; 2020 Sep; 252():153239. PubMed ID: 32763651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient.
    Kitao M; Kitaoka S; Komatsu M; Utsugi H; Tobita H; Koike T; Maruyama Y
    Physiol Plant; 2012 Oct; 146(2):192-204. PubMed ID: 22394101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms.
    Liu J; van Iersel MW
    Front Plant Sci; 2021; 12():619987. PubMed ID: 33747002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment.
    Posada JM; Sievänen R; Messier C; Perttunen J; Nikinmaa E; Lechowicz MJ
    Ann Bot; 2012 Aug; 110(3):731-41. PubMed ID: 22665700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of scale insect herbivory and shading on net gas exchange and growth of a subtropical tree species (Guaiacum sanctum L.).
    Schaffer B; Mason LJ
    Oecologia; 1990 Oct; 84(4):468-473. PubMed ID: 28312962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon gain and photosynthetic response of chrysanthemum to photosynthetic photon flux density cycles.
    Stoop JM; Willits DH; Peet MM; Nelson PV
    Plant Physiol; 1991 Jun; 96(2):529-36. PubMed ID: 16668218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic acclimation in a terrestrial CAM bromeliad, Bromelia humilis Jacq.
    Fetene M; Lee HSJ; Lüttge U
    New Phytol; 1990 Mar; 114(3):399-406. PubMed ID: 33873983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of elevated CO(2) and light availability on the photosynthetic light response of trees of contrasting shade tolerance.
    Kubiske ME; Pregitzer KS
    Tree Physiol; 1996 Mar; 16(3):351-8. PubMed ID: 14871736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.
    Mielke MS; Schaffer B
    Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.