These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2444278)

  • 1. The effect of methylmercury (II) binding on the conformation of poly(L-glutamic acid) and poly(L-lysine: a Raman spectroscopic study.
    Alex S; Tajmir-Riahi HA; Savoie R
    Biopolymers; 1987 Aug; 26(8):1421-30. PubMed ID: 2444278
    [No Abstract]   [Full Text] [Related]  

  • 2. UV resonance Raman determination of polyproline II, extended 2.5(1)-helix, and beta-sheet Psi angle energy landscape in poly-L-lysine and poly-L-glutamic acid.
    Mikhonin AV; Myshakina NS; Bykov SV; Asher SA
    J Am Chem Soc; 2005 Jun; 127(21):7712-20. PubMed ID: 15913361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(L-proline) II helix propensities in poly(L-lysine) dendrigraft generations from vibrational Raman optical activity.
    Johannessen C; Kapitán J; Collet H; Commeyras A; Hecht L; Barron LD
    Biomacromolecules; 2009 Jun; 10(6):1662-4. PubMed ID: 19499952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The solution conformation of poly(L-lysine). A Raman and infrared spectroscopic study.
    Painter PC; Koenig JL
    Biopolymers; 1976 Feb; 15(2):229-40. PubMed ID: 1247653
    [No Abstract]   [Full Text] [Related]  

  • 5. Anisotropic rotational motions of poly(L-glutamic acid) in the alpha-helix conformation.
    Hahn U; Hanssum H; Rüterjans H
    Biopolymers; 1985 Jul; 24(7):1147-56. PubMed ID: 2411306
    [No Abstract]   [Full Text] [Related]  

  • 6. Vibrational Raman optical activity characterization of poly(l-proline) II helix in alanine oligopeptides.
    McColl IH; Blanch EW; Hecht L; Kallenbach NR; Barron LD
    J Am Chem Soc; 2004 Apr; 126(16):5076-7. PubMed ID: 15099084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectra of D and L amino acid copolymers. Poly-DL-alanine, poly-DL-leucine, and poly-DL-lysine.
    Frushour BG; Koenig JL
    Biopolymers; 1975 Feb; 14(2):363-77. PubMed ID: 1174667
    [No Abstract]   [Full Text] [Related]  

  • 8. Two-dimensional Raman and Raman optical activity correlation analysis of the alpha-helix-to-disordered transition in poly(L-glutamic acid).
    Ashton L; Barron LD; Hecht L; Hyde J; Blanch EW
    Analyst; 2007 May; 132(5):468-79. PubMed ID: 17471394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferric complexes of acetoacetyl derivatives of poly(L-lysine), poly(L-ornithine), and poly(L-diaminobutyric acid). II. Conformational properties in solution. Evidence for a stereospecific complex formation.
    Palumbo M; Cosani A; Terbojevich M; Peggion E
    Biopolymers; 1976 Nov; 15(11):2255-62. PubMed ID: 990407
    [No Abstract]   [Full Text] [Related]  

  • 10. Raman spectroscopic evidence for structural changes in poly-L-lysine induced by an approximately 50 mT static magnetic field.
    Verma SP; Goldner RB
    Bioelectromagnetics; 1996; 17(1):33-6. PubMed ID: 8742753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differently charged polypeptides in the prevention of post-surgical peritoneal adhesions.
    Nehéz L; Tingstedt B; Axelsson J; Andersson R
    Scand J Gastroenterol; 2007 Apr; 42(4):519-23. PubMed ID: 17454864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational analysis of peptides, polypeptides, and proteins. XXXII. alpha-Poly(L-glutamic acid).
    Sengupta PK; Krimm S
    Biopolymers; 1985 Aug; 24(8):1479-91. PubMed ID: 2412608
    [No Abstract]   [Full Text] [Related]  

  • 13. Raman spectroscopic study of the interaction of poly-L-lysine with dipalmitoylphosphatidylglycerol bilayers.
    Carrier D; Pézolet M
    Biophys J; 1984 Oct; 46(4):497-506. PubMed ID: 6548648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferric complexes of acetoacetyl derivatives of poly(L-lysine), poly(L-ornithine), and poly(L-diaminobutyric acid). I. Preparation and absorption properties in solution.
    Palumbo M; Cosani A; Terbojevich M; Bacchion G; Peggion E
    Biopolymers; 1976 Nov; 15(11):2241-53. PubMed ID: 990406
    [No Abstract]   [Full Text] [Related]  

  • 15. Macromolecularization of a tripeptide analog of the Cu(II) binding site of human serum albumin. I. Synthesis, conformation, and binding properties of a Gly-Gly-His derivative of poly(L-lysine).
    Michielin L; Mammi S; Peggion E
    Biopolymers; 1983 Nov; 22(11):2325-9. PubMed ID: 6652220
    [No Abstract]   [Full Text] [Related]  

  • 16. Chemically related antigens compete for presentation by accessory cells to T cells.
    Werdelin O
    J Immunol; 1982 Nov; 129(5):1883-91. PubMed ID: 6181148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity in protein-nucleic acid interaction: Part II--Binding of mono- & di-nucleoside phosphate to poly-L-lysine at different conformations.
    Podder SK; Dasgupta D
    Indian J Biochem Biophys; 1980 Oct; 17(5):357-60. PubMed ID: 7251011
    [No Abstract]   [Full Text] [Related]  

  • 18. Raman amide bands of type-II beta-turns in cyclo-(VPGVG)3 and poly-(VPGVG), and implications for protein secondary-structure analysis.
    Thomas GJ; Prescott B; Urry DW
    Biopolymers; 1987 Jun; 26(6):921-34. PubMed ID: 3607249
    [No Abstract]   [Full Text] [Related]  

  • 19. UV raman examination of alpha-helical peptide water hydrogen bonding.
    Pimenov KV; Bykov SV; Mikhonin AV; Asher SA
    J Am Chem Soc; 2005 Mar; 127(9):2840-1. PubMed ID: 15740105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial degradation of poly(amino acid)s.
    Obst M; Steinbüchel A
    Biomacromolecules; 2004; 5(4):1166-76. PubMed ID: 15244426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.