These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 24442821)
1. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation. Zhang X; Chen X; Yang T; Zhang N; Dong L; Ma S; Liu X; Zhou M; Li B Cell Tissue Bank; 2014 Dec; 15(4):531-41. PubMed ID: 24442821 [TBL] [Abstract][Full Text] [Related]
2. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Yan LP; Wang YJ; Ren L; Wu G; Caridade SG; Fan JB; Wang LY; Ji PH; Oliveira JM; Oliveira JT; Mano JF; Reis RL J Biomed Mater Res A; 2010 Nov; 95(2):465-75. PubMed ID: 20648541 [TBL] [Abstract][Full Text] [Related]
3. Genipin-cross-linked type II collagen scaffold promotes the differentiation of adipose-derived stem cells into nucleus pulposus-like cells. Zhou X; Tao Y; Chen E; Wang J; Fang W; Zhao T; Liang C; Li F; Chen Q J Biomed Mater Res A; 2018 May; 106(5):1258-1268. PubMed ID: 29314724 [TBL] [Abstract][Full Text] [Related]
4. The effect of different cross-linking conditions of EDC/NHS on type II collagen scaffolds: an in vitro evaluation. Nong LM; Zhou D; Zheng D; Jiang YQ; Xu NW; Zhao GY; Wei H; Zhou SY; Han H; Han L Cell Tissue Bank; 2019 Dec; 20(4):557-568. PubMed ID: 31583486 [TBL] [Abstract][Full Text] [Related]
5. Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. Bi L; Cao Z; Hu Y; Song Y; Yu L; Yang B; Mu J; Huang Z; Han Y J Mater Sci Mater Med; 2011 Jan; 22(1):51-62. PubMed ID: 21052794 [TBL] [Abstract][Full Text] [Related]
6. Genipin-cross-linked electrospun collagen fibers. Mekhail M; Wong KK; Padavan DT; Wu Y; O'Gorman DB; Wan W J Biomater Sci Polym Ed; 2011; 22(17):2241-59. PubMed ID: 21083975 [TBL] [Abstract][Full Text] [Related]
7. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds-an in vitro evaluation using mesenchymal stem cells. Suchý T; Šupová M; Sauerová P; Verdánová M; Sucharda Z; Rýglová Š; Žaloudková M; Sedláček R; Kalbáčová MH Biomed Mater; 2015 Nov; 10(6):065008. PubMed ID: 26586611 [TBL] [Abstract][Full Text] [Related]
8. Modulation of the proliferation and matrix synthesis of chondrocytes by dynamic compression on genipin-crosslinked chitosan/collagen scaffolds. Wang PY; Tsai WB J Biomater Sci Polym Ed; 2013; 24(5):507-19. PubMed ID: 23565864 [TBL] [Abstract][Full Text] [Related]
9. Construction and biocompatibility of a thin type I/II collagen composite scaffold. Han L; Zhang ZW; Wang BH; Wen ZK Cell Tissue Bank; 2018 Mar; 19(1):47-59. PubMed ID: 28808811 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the properties of collagen-chitosan scaffolds after γ-ray irradiation and carbodiimide cross-linking. Chen Z; Du T; Tang X; Liu C; Li R; Xu C; Tian F; Du Z; Wu J J Biomater Sci Polym Ed; 2016 Jul; 27(10):937-53. PubMed ID: 27122297 [TBL] [Abstract][Full Text] [Related]
11. Formulation and characterization of silk sericin-PVA scaffold crosslinked with genipin. Aramwit P; Siritientong T; Kanokpanont S; Srichana T Int J Biol Macromol; 2010 Dec; 47(5):668-75. PubMed ID: 20804781 [TBL] [Abstract][Full Text] [Related]
12. The Use of Genipin as an Effective, Biocompatible, Anti-Inflammatory Cross-Linking Method for Nerve Guidance Conduits. Kočí Z; Sridharan R; Hibbitts AJ; Kneafsey SL; Kearney CJ; O'Brien FJ Adv Biosyst; 2020 Mar; 4(3):e1900212. PubMed ID: 32293152 [TBL] [Abstract][Full Text] [Related]
13. In vitro evaluation of Ficoll-enriched and genipin-stabilised collagen scaffolds. Satyam A; Subramanian GS; Raghunath M; Pandit A; Zeugolis DI J Tissue Eng Regen Med; 2014 Mar; 8(3):233-41. PubMed ID: 22552937 [TBL] [Abstract][Full Text] [Related]
14. Is quercetin an alternative natural crosslinking agent to genipin for long-term dermal scaffolds implantation? Greco KV; Francis L; Huang H; Ploeg R; Boccaccini AR; Ansari T J Tissue Eng Regen Med; 2018 Mar; 12(3):e1716-e1724. PubMed ID: 27717209 [TBL] [Abstract][Full Text] [Related]
15. Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: A comparative analysis. Shankar KG; Gostynska N; Montesi M; Panseri S; Sprio S; Kon E; Marcacci M; Tampieri A; Sandri M Int J Biol Macromol; 2017 Feb; 95():1199-1209. PubMed ID: 27836656 [TBL] [Abstract][Full Text] [Related]
16. Development and evaluation of cross-linked collagen-hydroxyapatite scaffolds for tissue engineering. Panda NN; Jonnalagadda S; Pramanik K J Biomater Sci Polym Ed; 2013; 24(18):2031-44. PubMed ID: 23905722 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of genipin cross-linked porous chitosan-collagen-gelatin scaffolds using chitosan-CO2 solution. Gorczyca G; Tylingo R; Szweda P; Augustin E; Sadowska M; Milewski S Carbohydr Polym; 2014 Feb; 102():901-11. PubMed ID: 24507362 [TBL] [Abstract][Full Text] [Related]
19. Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Suesca E; Dias AMA; Braga MEM; de Sousa HC; Fontanilla MR Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():333-341. PubMed ID: 28532037 [TBL] [Abstract][Full Text] [Related]
20. Predicting degradation rate of genipin cross-linked gelatin scaffolds with machine learning. Entekhabi E; Haghbin Nazarpak M; Sedighi M; Kazemzadeh A Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110362. PubMed ID: 31761181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]