BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 24443272)

  • 1. The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility.
    Kovach KM; Capadona JR; Gupta AS; Potkay JA
    J Biomed Mater Res A; 2014 Dec; 102(12):4195-205. PubMed ID: 24443272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of Polyethylene Glycol and Zwitterionic Surface Modifications in PDMS Microfluidic Flow Chambers.
    Plegue TJ; Kovach KM; Thompson AJ; Potkay JA
    Langmuir; 2018 Jan; 34(1):492-502. PubMed ID: 29231737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells.
    Peterson SL; McDonald A; Gourley PL; Sasaki DY
    J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane): synthesis, characterization, in vitro protein adsorption and platelet adhesion.
    Park JH; Bae YH
    Biomaterials; 2002 Apr; 23(8):1797-808. PubMed ID: 11950050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.
    Hellmich W; Regtmeier J; Duong TT; Ros R; Anselmetti D; Ros A
    Langmuir; 2005 Aug; 21(16):7551-7. PubMed ID: 16042494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation.
    Kuo WH; Wang MJ; Chien HW; Wei TC; Lee C; Tsai WB
    Biomacromolecules; 2011 Dec; 12(12):4348-56. PubMed ID: 22077421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D; Chen H; Glenn McClung W; Brash JL
    Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonfouling hydrophilic poly(ethylene glycol) engraftment strategy for PDMS/SU-8 heterogeneous microfluidic devices.
    Yeh PY; Zhang Z; Lin M; Cao X
    Langmuir; 2012 Nov; 28(46):16227-36. PubMed ID: 23110374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces.
    Yu L; Shi Z; Gao L; Li C
    J Biomed Mater Res A; 2015 Sep; 103(9):2987-97. PubMed ID: 25711883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide).
    Chen H; Zhang Z; Chen Y; Brook MA; Sheardown H
    Biomaterials; 2005 May; 26(15):2391-9. PubMed ID: 15585242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion.
    Sugiura S; Edahiro J; Sumaru K; Kanamori T
    Colloids Surf B Biointerfaces; 2008 Jun; 63(2):301-5. PubMed ID: 18242961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inkjet print microchannels based on a liquid template.
    Guo Y; Li L; Li F; Zhou H; Song Y
    Lab Chip; 2015 Apr; 15(7):1759-64. PubMed ID: 25686015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of PDMS microchips with poly(ethylene glycol) derivatives for μTAS applications.
    de Campos RP; Yoshida IV; da Silva JA
    Electrophoresis; 2014 Aug; 35(16):2346-52. PubMed ID: 24723304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ grafting hydrophilic polymer on chitosan modified poly(dimethylsiloxane) microchip for separation of biomolecules.
    Wang AJ; Xu JJ; Chen HY
    J Chromatogr A; 2007 Apr; 1147(1):120-6. PubMed ID: 17320888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer.
    Chen H; Chen Y; Sheardown H; Brook MA
    Biomaterials; 2005 Dec; 26(35):7418-24. PubMed ID: 16051347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and hemocompatibility study of highly bioactive heparin-functionalized surface.
    Yang ZL; Zhou S; Lu L; Wang X; Wang J; Huang N
    J Biomed Mater Res A; 2012 Nov; 100(11):3124-33. PubMed ID: 22815121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and evaluation of PEO-coated materials for a microchannel hemodialyzer.
    Heintz K; Schilke KF; Snider J; Lee WK; Truong M; Coblyn M; Jovanovic G; McGuire J
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1014-20. PubMed ID: 24357465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Athrombogenic hydrogel coatings for medical devices--Examination of biological properties.
    Butruk-Raszeja BA; Łojszczyk I; Ciach T; Kościelniak-Ziemniak M; Janiczak K; Kustosz R; Gonsior M
    Colloids Surf B Biointerfaces; 2015 Jun; 130():192-8. PubMed ID: 25912028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.