These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24443369)

  • 1. A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane.
    Chen Y; Wise SM; Shenoy VB; Lowengrub JS
    Int J Numer Method Biomed Eng; 2014 Jul; 30(7):726-54. PubMed ID: 24443369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models.
    Wise SM; Lowengrub JS; Cristini V
    Math Comput Model; 2011 Jan; 53(1-2):1-20. PubMed ID: 21076663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method.
    Wise SM; Lowengrub JS; Frieboes HB; Cristini V
    J Theor Biol; 2008 Aug; 253(3):524-43. PubMed ID: 18485374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical model and its fast numerical method for the tumor growth.
    Lee HG; Kim Y; Kim J
    Math Biosci Eng; 2015 Dec; 12(6):1173-87. PubMed ID: 26775855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor growth and calcification in evolving microenvironmental geometries.
    Chen Y; Lowengrub JS
    J Theor Biol; 2019 Feb; 463():138-154. PubMed ID: 30528340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching.
    Cristini V; Li X; Lowengrub JS; Wise SM
    J Math Biol; 2009 Apr; 58(4-5):723-63. PubMed ID: 18787827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of Multispecies Desmoplastic Cancer Growth via a Fully Adaptive Non-linear Full Multigrid Algorithm.
    Ng CF; Frieboes HB
    Front Physiol; 2018; 9():821. PubMed ID: 30050447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of a thermodynamically consistent four-species tumor growth model.
    Hawkins-Daarud A; van der Zee KG; Oden JT
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):3-24. PubMed ID: 25830204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of 3D tumor cell growth using nonlinear finite element method.
    Dong S; Yan Y; Tang L; Meng J; Jiang Y
    Comput Methods Biomech Biomed Engin; 2016; 19(8):807-18. PubMed ID: 26213205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphase modelling of vascular tumour growth in two spatial dimensions.
    Hubbard ME; Byrne HM
    J Theor Biol; 2013 Jan; 316():70-89. PubMed ID: 23032218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radial basis function-generated finite difference scheme for simulating the brain cancer growth model under radiotherapy in various types of computational domains.
    Dehghan M; Narimani N
    Comput Methods Programs Biomed; 2020 Oct; 195():105641. PubMed ID: 32726719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation.
    He S; Liu Y; Li H
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation with artificial boundary conditions.
    Trofimov VA; Trykin EM
    PLoS One; 2018; 13(10):e0206235. PubMed ID: 30379875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-accuracy positivity-preserving numerical method for Keller-Segel model.
    Zhang L; Ge Y; Yang X
    Math Biosci Eng; 2023 Mar; 20(5):8601-8631. PubMed ID: 37161214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulations of phase separation dynamics in a water-oil-surfactant system.
    Kim J
    J Colloid Interface Sci; 2006 Nov; 303(1):272-9. PubMed ID: 16890235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes.
    Li P; Zhang J
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3200. PubMed ID: 30884167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified multilevel scheme for internal and external constraints in virtual environments.
    Arikatla VS; De S
    Stud Health Technol Inform; 2013; 184():31-5. PubMed ID: 23400125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models.
    Wu X; van Zwieten GJ; van der Zee KG
    Int J Numer Method Biomed Eng; 2014 Feb; 30(2):180-203. PubMed ID: 24023005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating interfacial anisotropy in thin-film growth using an extended Cahn-Hilliard model.
    Torabi S; Lowengrub J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041603. PubMed ID: 22680484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.