These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

555 related articles for article (PubMed ID: 24443519)

  • 1. DNA replicons for plant genome engineering.
    Baltes NJ; Gil-Humanes J; Cermak T; Atkins PA; Voytas DF
    Plant Cell; 2014 Jan; 26(1):151-63. PubMed ID: 24443519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9.
    Gil-Humanes J; Wang Y; Liang Z; Shan Q; Ozuna CV; Sánchez-León S; Baltes NJ; Starker C; Barro F; Gao C; Voytas DF
    Plant J; 2017 Mar; 89(6):1251-1262. PubMed ID: 27943461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-frequency, precise modification of the tomato genome.
    Čermák T; Baltes NJ; Čegan R; Zhang Y; Voytas DF
    Genome Biol; 2015 Nov; 16():232. PubMed ID: 26541286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CRISPR/Cas9 system for plant genome editing and beyond.
    Bortesi L; Fischer R
    Biotechnol Adv; 2015; 33(1):41-52. PubMed ID: 25536441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases.
    Butler NM; Baltes NJ; Voytas DF; Douches DS
    Front Plant Sci; 2016; 7():1045. PubMed ID: 27493650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small high-yielding binary Ti vectors pLSU with co-directional replicons for Agrobacterium tumefaciens-mediated transformation of higher plants.
    Lee S; Su G; Lasserre E; Aghazadeh MA; Murai N
    Plant Sci; 2012 May; 187():49-58. PubMed ID: 22404832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells.
    Tovkach A; Zeevi V; Tzfira T
    Plant J; 2009 Feb; 57(4):747-57. PubMed ID: 18980651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system.
    Dahan-Meir T; Filler-Hayut S; Melamed-Bessudo C; Bocobza S; Czosnek H; Aharoni A; Levy AA
    Plant J; 2018 Jul; 95(1):5-16. PubMed ID: 29668111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants.
    Čermák T; Curtin SJ; Gil-Humanes J; Čegan R; Kono TJY; Konečná E; Belanto JJ; Starker CG; Mathre JW; Greenstein RL; Voytas DF
    Plant Cell; 2017 Jun; 29(6):1196-1217. PubMed ID: 28522548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. True gene-targeting events by CRISPR/Cas-induced DSB repair of the PPO locus with an ectopically integrated repair template.
    de Pater S; Klemann BJPM; Hooykaas PJJ
    Sci Rep; 2018 Feb; 8(1):3338. PubMed ID: 29463822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed nucleases for targeted genome editing.
    Lee J; Chung JH; Kim HM; Kim DW; Kim H
    Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity and specificity of TRV-mediated gene editing in plants.
    Ali Z; Abul-Faraj A; Piatek M; Mahfouz MM
    Plant Signal Behav; 2015; 10(10):e1044191. PubMed ID: 26039254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration.
    Vaghchhipawala ZE; Vasudevan B; Lee S; Morsy MR; Mysore KS
    Plant Cell; 2012 Oct; 24(10):4110-23. PubMed ID: 23064322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System.
    Butler NM; Atkins PA; Voytas DF; Douches DS
    PLoS One; 2015; 10(12):e0144591. PubMed ID: 26657719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants.
    Sauer NJ; Narváez-Vásquez J; Mozoruk J; Miller RB; Warburg ZJ; Woodward MJ; Mihiret YA; Lincoln TA; Segami RE; Sanders SL; Walker KA; Beetham PR; Schöpke CR; Gocal GF
    Plant Physiol; 2016 Apr; 170(4):1917-28. PubMed ID: 26864017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates.
    Tzfira T; Frankman LR; Vaidya M; Citovsky V
    Plant Physiol; 2003 Nov; 133(3):1011-23. PubMed ID: 14551323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrobacterium: A Genome-Editing Tool-Delivery System.
    Sardesai N; Subramanyam S
    Curr Top Microbiol Immunol; 2018; 418():463-488. PubMed ID: 30043343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants].
    Ma XL; Liu YG
    Yi Chuan; 2016 Feb; 38(2):118-25. PubMed ID: 26907775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging Genome Engineering Tools in Crop Research and Breeding.
    Bilichak A; Gaudet D; Laurie J
    Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene targeting in plants: 25 years later.
    Puchta H; Fauser F
    Int J Dev Biol; 2013; 57(6-8):629-37. PubMed ID: 24166445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.