These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24443626)

  • 61. Fast three-color single-molecule FRET using statistical inference.
    Yoo J; Kim JY; Louis JM; Gopich IV; Chung HS
    Nat Commun; 2020 Jul; 11(1):3336. PubMed ID: 32620782
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparing Fast Pressure Jump and Temperature Jump Protein Folding Experiments and Simulations.
    Wirth AJ; Liu Y; Prigozhin MB; Schulten K; Gruebele M
    J Am Chem Soc; 2015 Jun; 137(22):7152-7159. PubMed ID: 25988868
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Time-resolved burst variance analysis.
    Terterov I; Nettels D; Makarov DE; Hofmann H
    Biophys Rep (N Y); 2023 Sep; 3(3):100116. PubMed ID: 37559939
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Theory and Analysis of Single-Molecule FRET Experiments.
    Gopich IV; Chung HS
    Methods Mol Biol; 2022; 2376():247-282. PubMed ID: 34845614
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Determination of photophysical parameters from photon arrival time trajectories in single molecule fluorescence spectroscopy.
    Martyński M; Zydlewicz J; Boens N; Molski A
    J Chem Phys; 2005 Apr; 122(13):134507. PubMed ID: 15847481
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Decoding the pattern of photon colors in single-molecule FRET.
    Gopich IV; Szabo A
    J Phys Chem B; 2009 Aug; 113(31):10965-73. PubMed ID: 19588948
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ultrafast Single-Molecule Fluorescence Measured by Femtosecond Double-Pulse Excitation Photon Antibunching.
    Schedlbauer J; Wilhelm P; Grabenhorst L; Federl ME; Lalkens B; Hinderer F; Scherf U; Höger S; Tinnefeld P; Bange S; Vogelsang J; Lupton JM
    Nano Lett; 2020 Feb; 20(2):1074-1079. PubMed ID: 31869232
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rise-time of FRET-acceptor fluorescence tracks protein folding.
    Lindhoud S; Westphal AH; van Mierlo CP; Visser AJ; Borst JW
    Int J Mol Sci; 2014 Dec; 15(12):23836-50. PubMed ID: 25535076
    [TBL] [Abstract][Full Text] [Related]  

  • 69. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonuclease A.
    Sendak RA; Rothwarf DM; Wedemeyer WJ; Houry WA; Scheraga HA
    Biochemistry; 1996 Oct; 35(39):12978-92. PubMed ID: 8841145
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Triplet-triplet energy transfer studies on conformational dynamics in peptides and a protein.
    Reiner A
    J Pept Sci; 2011 Jun; 17(6):413-9. PubMed ID: 21360629
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Folding kinetics of villin 14T, a protein domain with a central beta-sheet and two hydrophobic cores.
    Choe SE; Matsudaira PT; Osterhout J; Wagner G; Shakhnovich EI
    Biochemistry; 1998 Oct; 37(41):14508-18. PubMed ID: 9772179
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A quantitative treatment of the kinetics of the folding transition of ribonuclease A.
    Hagerman PJ; Baldwin RL
    Biochemistry; 1976 Apr; 15(7):1462-73. PubMed ID: 4087
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Is protein unfolding the reverse of protein folding? A lattice simulation analysis.
    Dinner AR; Karplus M
    J Mol Biol; 1999 Sep; 292(2):403-19. PubMed ID: 10493884
    [TBL] [Abstract][Full Text] [Related]  

  • 75. pH-induced folding/unfolding of staphylococcal nuclease: determination of kinetic parameters by the sequential-jump method.
    Chen HM; Markin VS; Tsong TY
    Biochemistry; 1992 Feb; 31(5):1483-91. PubMed ID: 1737007
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations.
    Biyun S; Cho SS; Thirumalai D
    J Am Chem Soc; 2011 Dec; 133(50):20634-43. PubMed ID: 22082261
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Temperature-dependent downhill unfolding of ubiquitin. I. Nanosecond-to-millisecond resolved nonlinear infrared spectroscopy.
    Chung HS; Tokmakoff A
    Proteins; 2008 Jul; 72(1):474-87. PubMed ID: 18384151
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Direct Observation and Real-Time Tracking of an Extraordinarily Stable Folding Intermediate in Mitotic Arrest Deficient Protein 2 Folding by Single-Molecule Fluorescence Resonance Energy Transfer.
    Hu X; Zhao J; Zhao Y; Zhang H; Wang Q; Ge B; Wang X; He H; Nau WM; Wang X; Huang F
    J Phys Chem Lett; 2023 Jan; 14(3):763-769. PubMed ID: 36651986
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biomolecular dynamics studied with IR-spectroscopy using quantum cascade lasers combined with nanosecond perturbation techniques.
    Popp A; Scheerer D; Heck B; Hauser K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():192-199. PubMed ID: 28364666
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds.
    Nettels D; Hoffmann A; Schuler B
    J Phys Chem B; 2008 May; 112(19):6137-46. PubMed ID: 18410159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.