These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 24443925)

  • 1. Understanding the temporal evolution of neuronal connectivity in cultured networks using statistical analysis.
    Napoli A; Xie J; Obeid I
    BMC Neurosci; 2014 Jan; 15():17. PubMed ID: 24443925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures.
    Rolston JD; Wagenaar DA; Potter SM
    Neuroscience; 2007 Aug; 148(1):294-303. PubMed ID: 17614210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity modulation elicited by electrical stimulation in networks of dissociated cortical neurons.
    Massobrio P; Baljon PL; Maccione A; Chiappalone M; Martinoia S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3008-11. PubMed ID: 18002628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical long-term correlations in dissociated cortical neuron recordings.
    Esposti F; Signorini MG; Potter SM; Cerutti S
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):364-9. PubMed ID: 19482584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays.
    Hammond MW; Xydas D; Downes JH; Bucci G; Becerra V; Warwick K; Constanti A; Nasuto SJ; Whalley BJ
    BMC Neurosci; 2013 Mar; 14():38. PubMed ID: 23530974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device.
    Kanagasabapathi TT; Massobrio P; Barone RA; Tedesco M; Martinoia S; Wadman WJ; Decré MM
    J Neural Eng; 2012 Jun; 9(3):036010. PubMed ID: 22614532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extremely rich repertoire of bursting patterns during the development of cortical cultures.
    Wagenaar DA; Pine J; Potter SM
    BMC Neurosci; 2006 Feb; 7():11. PubMed ID: 16464257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics.
    Chao ZC; Bakkum DJ; Potter SM
    J Neural Eng; 2007 Sep; 4(3):294-308. PubMed ID: 17873432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of neuronal networks development from in-vitro recordings: A Granger causality based approach.
    Lamanna J; Esposti F; Signorini MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4842-5. PubMed ID: 21097302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term memory in networks of dissociated cortical neurons.
    Dranias MR; Ju H; Rajaram E; VanDongen AM
    J Neurosci; 2013 Jan; 33(5):1940-53. PubMed ID: 23365233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditional firing probabilities in cultured neuronal networks: a stable underlying structure in widely varying spontaneous activity patterns.
    le Feber J; Rutten WL; Stegenga J; Wolters PS; Ramakers GJ; van Pelt J
    J Neural Eng; 2007 Jun; 4(2):54-67. PubMed ID: 17409480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating brain functional evolution and plasticity using microelectrode array technology.
    Napoli A; Obeid I
    Brain Res Bull; 2015 Oct; 119(Pt B):127-35. PubMed ID: 26476356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEA-based recording of neuronal activity in vitro.
    Jimbo Y
    Arch Ital Biol; 2007 Nov; 145(3-4):289-97. PubMed ID: 18075122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency stimulation enhances burst activity in cortical cultures during development.
    Bologna LL; Nieus T; Tedesco M; Chiappalone M; Benfenati F; Martinoia S
    Neuroscience; 2010 Feb; 165(3):692-704. PubMed ID: 19922773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Latency dependent development of related firing patterns of cultured cortical neurons.
    le Feber J; van Pelt J; Rutten W
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3000-3. PubMed ID: 18002626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do TTX and AP5 affect the post-recovery neuronal network activity synchronization?
    Esposti F; Signorini MG; Lamanna J; Gullo F; Wanke E
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3012-5. PubMed ID: 18002629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multichannel activity propagation across an engineered axon network.
    Chen HI; Wolf JA; Smith DH
    J Neural Eng; 2017 Apr; 14(2):026016. PubMed ID: 28140365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-electrode array recordings reveal reductions in both excitation and inhibition in cultured cortical neuron networks lacking Shank3.
    Lu C; Chen Q; Zhou T; Bozic D; Fu Z; Pan JQ; Feng G
    Mol Psychiatry; 2016 Feb; 21(2):159-68. PubMed ID: 26598066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.