These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24444078)

  • 1. A microfluidic-enabled mechanical microcompressor for the immobilization of live single- and multi-cellular specimens.
    Yan Y; Jiang L; Aufderheide KJ; Wright GA; Terekhov A; Costa L; Qin K; McCleery WT; Fellenstein JJ; Ustione A; Robertson JB; Johnson CH; Piston DW; Hutson MS; Wikswo JP; Hofmeister W; Janetopoulos C
    Microsc Microanal; 2014 Feb; 20(1):141-51. PubMed ID: 24444078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanical microcompressor for high resolution imaging of motile specimens.
    Zinskie JA; Shribak M; Bruist MF; Aufderheide KJ; Janetopoulos C
    Exp Cell Res; 2015 Oct; 337(2):249-56. PubMed ID: 26192819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple microfluidic devices for in vivo imaging of C. elegans, Drosophila and zebrafish.
    Mondal S; Ahlawat S; Koushika SP
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-nanowatt microfluidic single-cell calorimetry.
    Hong S; Dechaumphai E; Green CR; Lal R; Murphy AN; Metallo CM; Chen R
    Nat Commun; 2020 Jun; 11(1):2982. PubMed ID: 32532969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput mechanotransduction in Drosophila embryos with mesofluidics.
    Shorr AZ; Sönmez UM; Minden JS; LeDuc PR
    Lab Chip; 2019 Mar; 19(7):1141-1152. PubMed ID: 30778467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic trapping of Tetrahymena thermophila for the long-term monitoring of cell behaviors.
    Kumano I; Hosoda K; Suzuki H; Hirata K; Yomo T
    Lab Chip; 2012 Sep; 12(18):3451-7. PubMed ID: 22825740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous flow microfluidic cell inactivation with the use of insulating micropillars for multiple electroporation zones.
    Pudasaini S; Perera ATK; Das D; Ng SH; Yang C
    Electrophoresis; 2019 Sep; 40(18-19):2522-2529. PubMed ID: 31177580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latest developments in microfluidic cell biology and analysis systems.
    Salieb-Beugelaar GB; Simone G; Arora A; Philippi A; Manz A
    Anal Chem; 2010 Jun; 82(12):4848-64. PubMed ID: 20462184
    [No Abstract]   [Full Text] [Related]  

  • 9. Cell squeezing as a robust, microfluidic intracellular delivery platform.
    Sharei A; Cho N; Mao S; Jackson E; Poceviciute R; Adamo A; Zoldan J; Langer R; Jensen KF
    J Vis Exp; 2013 Nov; (81):e50980. PubMed ID: 24300077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using microfluidics chips for live imaging and study of injury responses in Drosophila larvae.
    Mishra B; Ghannad-Rezaie M; Li J; Wang X; Hao Y; Ye B; Chronis N; Collins CA
    J Vis Exp; 2014 Feb; (84):e50998. PubMed ID: 24562098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple microfluidic device for live cell imaging of Arabidopsis cotyledons, leaves, and seedlings.
    Vang S; Seitz K; Krysan PJ
    Biotechniques; 2018 Jun; 64(6):255-261. PubMed ID: 29939090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Open-top" microfluidic device for in vitro three-dimensional capillary beds.
    Oh S; Ryu H; Tahk D; Ko J; Chung Y; Lee HK; Lee TR; Jeon NL
    Lab Chip; 2017 Oct; 17(20):3405-3414. PubMed ID: 28944383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation.
    Zeng F; Rohde CB; Yanik MF
    Lab Chip; 2008 May; 8(5):653-6. PubMed ID: 18432331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies.
    Krajniak J; Lu H
    Lab Chip; 2010 Jul; 10(14):1862-8. PubMed ID: 20461264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanostimulation of Multicellular Organisms Through a High-Throughput Microfluidic Compression System.
    Sönmez UM; Frey N; Minden JS; LeDuc PR
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36622011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemorepellents in Paramecium and Tetrahymena.
    Francis JT; Hennessey TM
    J Eukaryot Microbiol; 1995; 42(1):78-83. PubMed ID: 7537146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Strategies for Understanding the Mechanics of Cells and Cell-Mimetic Systems.
    Dahl JB; Lin JM; Muller SJ; Kumar S
    Annu Rev Chem Biomol Eng; 2015; 6():293-317. PubMed ID: 26134738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standing surface acoustic wave (SSAW)-based cell washing.
    Li S; Ding X; Mao Z; Chen Y; Nama N; Guo F; Li P; Wang L; Cameron CE; Huang TJ
    Lab Chip; 2015 Jan; 15(1):331-8. PubMed ID: 25372273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes.
    Eriksson E; Enger J; Nordlander B; Erjavec N; Ramser K; Goksör M; Hohmann S; Nyström T; Hanstorp D
    Lab Chip; 2007 Jan; 7(1):71-6. PubMed ID: 17180207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High spatial and temporal resolution cell manipulation techniques in microchannels.
    Novo P; Dell'Aica M; Janasek D; Zahedi RP
    Analyst; 2016 Mar; 141(6):1888-905. PubMed ID: 26891209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.