These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 24444151)
1. Formation and morphology of reverse micelles formed by nonionic surfactants in "dry" organic solvents. Pérez SV; Olea AF; Gárate MP Curr Top Med Chem; 2014; 14(6):774-80. PubMed ID: 24444151 [TBL] [Abstract][Full Text] [Related]
2. Evidence for a critical micelle concentration of surfactants in hydrocarbon solvents. Smith GN; Brown P; Rogers SE; Eastoe J Langmuir; 2013 Mar; 29(10):3252-8. PubMed ID: 23410112 [TBL] [Abstract][Full Text] [Related]
3. Micellization of alkyl-propoxy-ethoxylate surfactants in water-polar organic solvent mixtures. Sarkar B; Lam S; Alexandridis P Langmuir; 2010 Jul; 26(13):10532-40. PubMed ID: 20334370 [TBL] [Abstract][Full Text] [Related]
4. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution. Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258 [TBL] [Abstract][Full Text] [Related]
5. Micellar partitioning and its effects on Henry's law constants of chlorinated solvents in anionic and nonionic surfactant solutions. Zhang C; Zheng G; Nichols CM Environ Sci Technol; 2006 Jan; 40(1):208-14. PubMed ID: 16433353 [TBL] [Abstract][Full Text] [Related]
6. Effect of confinement on excited-state proton transfer of firefly's chromophore D-luciferin in AOT reverse micelles. Kuchlyan J; Banik D; Kundu N; Ghosh S; Banerjee C; Sarkar N J Phys Chem B; 2014 Mar; 118(12):3401-8. PubMed ID: 24624892 [TBL] [Abstract][Full Text] [Related]
7. Nanoscale Control Over Interfacial Properties in Mixed Reverse Micelles Formulated by Using Sodium 1,4-bis-2-ethylhexylsulfosuccinate and Tri-n-octyl Phosphine Oxide Surfactants. Odella E; Falcone RD; Silber JJ; Correa NM Chemphyschem; 2016 Aug; 17(15):2407-14. PubMed ID: 27128745 [TBL] [Abstract][Full Text] [Related]
8. Solvent blends can control cationic reversed micellar interdroplet interactions. The effect of n-heptane:benzene mixture on BHDC reversed micellar interfacial properties: droplet sizes and micropolarity. Agazzi FM; Falcone RD; Silber JJ; Correa NM J Phys Chem B; 2011 Oct; 115(42):12076-84. PubMed ID: 21916486 [TBL] [Abstract][Full Text] [Related]
9. NMR studies of aggregation and hydration of surfactants containing amide bonds. Stjerndahl M; Lundberg D; Zhang H; Menger FM J Phys Chem B; 2007 Mar; 111(8):2008-14. PubMed ID: 17274645 [TBL] [Abstract][Full Text] [Related]
10. Properties of binary surfactant systems of nonionic surfactants C12E10, C12E23, and C12E42 with a cationic gemini surfactant in aqueous solutions. Hu C; Li R; Yang H; Wang J J Colloid Interface Sci; 2011 Apr; 356(2):605-13. PubMed ID: 21316703 [TBL] [Abstract][Full Text] [Related]
11. Experimental and theoretical approach to the sodium decanoate-dodecanoate mixed surfactant system in aqueous solution. Rodríguez-Pulido A; Casado A; Muñoz-Ubeda M; Junquera E; Aicart E Langmuir; 2010 Jun; 26(12):9378-85. PubMed ID: 20462279 [TBL] [Abstract][Full Text] [Related]
12. Rapid determination of surfactant critical micelle concentrations using pressure-driven flow with capillary electrophoresis instrumentation. Stanley FE; Warner AM; Schneiderman E; Stalcup AM J Chromatogr A; 2009 Nov; 1216(47):8431-4. PubMed ID: 19836753 [TBL] [Abstract][Full Text] [Related]
13. A new pyrene-based fluorescent probe for the determination of critical micelle concentrations. Mohr A; Talbiersky P; Korth HG; Sustmann R; Boese R; Bläser D; Rehage H J Phys Chem B; 2007 Nov; 111(45):12985-92. PubMed ID: 17958349 [TBL] [Abstract][Full Text] [Related]
14. Curcumin in reverse micelle: an example to control excited-state intramolecular proton transfer (ESIPT) in confined media. Banerjee C; Ghatak C; Mandal S; Ghosh S; Kuchlyan J; Sarkar N J Phys Chem B; 2013 Jun; 117(23):6906-16. PubMed ID: 23687942 [TBL] [Abstract][Full Text] [Related]
15. Sugar-based gemini surfactants with peptide bonds-synthesis, adsorption, micellization, and biodegradability. Yoshimura T; Ishihara K; Esumi K Langmuir; 2005 Nov; 21(23):10409-15. PubMed ID: 16262300 [TBL] [Abstract][Full Text] [Related]
16. Physicochemical characteristics of reverse micelles of polyoxyethylene nonyl phenol in different organic solvents. Ghosh SK; Khatua PK; Bhattacharya SC J Colloid Interface Sci; 2004 Nov; 279(2):523-32. PubMed ID: 15464820 [TBL] [Abstract][Full Text] [Related]
17. Interaction of nonionic surfactants and hydrophilic ionic liquids in aqueous solutions: can short ionic liquids be more than a solvent? Comelles F; Ribosa I; González JJ; Garcia MT Langmuir; 2012 Oct; 28(41):14522-30. PubMed ID: 22998152 [TBL] [Abstract][Full Text] [Related]
18. Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension-A Method Comparison. Scholz N; Behnke T; Resch-Genger U J Fluoresc; 2018 Jan; 28(1):465-476. PubMed ID: 29332160 [TBL] [Abstract][Full Text] [Related]
19. Critical concentration of ion-pairs formation in nonpolar media. Dukhin A Electrophoresis; 2014 Jul; 35(12-13):1773-81. PubMed ID: 24585445 [TBL] [Abstract][Full Text] [Related]
20. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants. Zhu L; Feng S Chemosphere; 2003 Nov; 53(5):459-67. PubMed ID: 12948529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]