BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24444152)

  • 21. Conformational changes of DNA in the presence of 12-s-12 gemini surfactants (s=2 and 10). Role of the spacer's length in the interaction surfactant-polynucleotide.
    García JP; Marrón E; Martín VI; Moyá ML; Lopez-Cornejo P
    Colloids Surf B Biointerfaces; 2014 Jun; 118():90-100. PubMed ID: 24736044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of photosensitive surfactant with DNA and poly acrylic acid.
    Zakrevskyy Y; Cywinski P; Cywinska M; Paasche J; Lomadze N; Reich O; Löhmannsröben HG; Santer S
    J Chem Phys; 2014 Jan; 140(4):044907. PubMed ID: 25669583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compaction and decompaction of DNA induced by the cationic surfactant CTAB.
    Grueso E; Cerrillos C; Hidalgo J; Lopez-Cornejo P
    Langmuir; 2012 Jul; 28(30):10968-79. PubMed ID: 22755509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How does DNA compaction favor chiral selectivity with cationic species? Higher selectivity with lower cationic charge.
    Zinchenko AA; Chen N; Murata S; Yoshikawa K
    Chembiochem; 2005 Aug; 6(8):1419-22. PubMed ID: 16003803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA-lipid systems. A physical chemistry study.
    Dias R; Antunes F; Miguel M; Lindman S; Lindman B
    Braz J Med Biol Res; 2002 May; 35(5):509-22. PubMed ID: 12011935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrodynamic size of DNA/cationic gemini surfactant complex as a function of surfactant structure.
    Devínsky F; Pisárcik M; Lacko I
    Gen Physiol Biophys; 2009 Jun; 28(2):160-7. PubMed ID: 19592712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beta-cyclodextrin in DNA decompaction: an imaging approach.
    Gonzalez-Perez A
    Front Biosci (Elite Ed); 2010 Jan; 2(2):684-93. PubMed ID: 20036912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatic effects on the stability of condensed DNA in the presence of divalent cations.
    Duguid JG; Bloomfield VA
    Biophys J; 1996 Jun; 70(6):2838-46. PubMed ID: 8744321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decompaction of cationic gemini surfactant-induced DNA condensates by beta-cyclodextrin or anionic surfactant.
    Cao M; Deng M; Wang XL; Wang Y
    J Phys Chem B; 2008 Oct; 112(43):13648-54. PubMed ID: 18839984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermo-reversible capture and release of DNA by zwitterionic surfactants.
    Feng L; Xu L; Dong S; Hao J
    Soft Matter; 2016 Sep; 12(36):7495-504. PubMed ID: 27539945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of homologous series of n-alkyl sulfates and n-alkyl trimethylammonium bromides on low molecular mass protein tyrosine phosphatase activity.
    Granjeiro JM; Miranda MA; da Glória S T Maia M; Ferreira CV; Taga EM; Aoyama H; Volpe PL
    Mol Cell Biochem; 2004 Oct; 265(1-2):133-40. PubMed ID: 15543943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of DNA compaction by negatively charged nanoparticles: effect of nanoparticle size and surfactant chain length.
    Rudiuk S; Yoshikawa K; Baigl D
    J Colloid Interface Sci; 2012 Feb; 368(1):372-7. PubMed ID: 22071517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coil-globule transition of DNA molecules induced by cationic surfactants: a dynamic light scattering study.
    Dias RS; Innerlohinger J; Glatter O; Miguel MG; Lindman B
    J Phys Chem B; 2005 May; 109(20):10458-63. PubMed ID: 16852267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional nanofibrous scaffolds for bone reconstruction.
    Burger C; Chu B
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):134-41. PubMed ID: 17113762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling the capture and release of DNA with a dual-responsive cationic surfactant.
    Xu L; Feng L; Hao J; Dong S
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8876-85. PubMed ID: 25850815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vesicle transition of catanionic redox-switchable surfactants controlled by DNA with different chain lengths.
    Liu H; Wang L; Wang X; Hu Y; Feng L; Dong S; Hao J
    J Colloid Interface Sci; 2019 Aug; 549():89-97. PubMed ID: 31022527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Small anion with higher valency retards the compaction of DNA in the presence of multivalent cation.
    Saito T; Iwaki T; Yoshikawa K
    Biophys J; 2009 Feb; 96(3):1068-75. PubMed ID: 19186143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of linker groups between hydrophilic and hydrophobic moieties of cationic surfactants on oligonucleotide-surfactant interactions.
    Santhiya D; Dias RS; Shome A; Das PK; Miguel MG; Lindman B; Maiti S
    Langmuir; 2009 Dec; 25(24):13770-5. PubMed ID: 19681626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA condensation by multivalent cations.
    Bloomfield VA
    Biopolymers; 1997; 44(3):269-82. PubMed ID: 9591479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled and reversible binding of positively charged quantum dots to lambda DNA.
    Liu Y; Zhang MX; Zhang ZL; Xie HY; Tian ZQ; Wong KY; Pang DW
    Front Biosci; 2008 Jan; 13():923-8. PubMed ID: 17981600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.