These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24444459)

  • 1. BioShell-Threading: versatile Monte Carlo package for protein 3D threading.
    Gniewek P; Kolinski A; Kloczkowski A; Gront D
    BMC Bioinformatics; 2014 Jan; 15():22. PubMed ID: 24444459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BioShell--a package of tools for structural biology computations.
    Gront D; Kolinski A
    Bioinformatics; 2006 Mar; 22(5):621-2. PubMed ID: 16407320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ProALIGN: Directly Learning Alignments for Protein Structure Prediction via Exploiting Context-Specific Alignment Motifs.
    Kong L; Ju F; Zheng WM; Zhu J; Sun S; Xu J; Bu D
    J Comput Biol; 2022 Feb; 29(2):92-105. PubMed ID: 35073170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized comparative modeling (GENECOMP): a combination of sequence comparison, threading, and lattice modeling for protein structure prediction and refinement.
    Kolinski A; Betancourt MR; Kihara D; Rotkiewicz P; Skolnick J
    Proteins; 2001 Aug; 44(2):133-49. PubMed ID: 11391776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative modeling without implicit sequence alignments.
    Kolinski A; Gront D
    Bioinformatics; 2007 Oct; 23(19):2522-7. PubMed ID: 17660201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BioShell Threader: protein homology detection based on sequence profiles and secondary structure profiles.
    Gront D; Blaszczyk M; Wojciechowski P; Kolinski A
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W257-62. PubMed ID: 22693216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for the improvement of threading-based protein models.
    Kolinski A; Rotkiewicz P; Ilkowski B; Skolnick J
    Proteins; 1999 Dec; 37(4):592-610. PubMed ID: 10651275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of profile-to-profile alignment parameters for one-dimensional threading.
    Gniewek P; Kolinski A; Gront D
    J Comput Biol; 2012 Jul; 19(7):879-86. PubMed ID: 22731622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-based and free modeling by RAPTOR++ in CASP8.
    Xu J; Peng J; Zhao F
    Proteins; 2009; 77 Suppl 9(Suppl 9):133-7. PubMed ID: 19722267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein threading using residue co-variation and deep learning.
    Zhu J; Wang S; Bu D; Xu J
    Bioinformatics; 2018 Jul; 34(13):i263-i273. PubMed ID: 29949980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conditional neural fields model for protein threading.
    Ma J; Peng J; Wang S; Xu J
    Bioinformatics; 2012 Jun; 28(12):i59-66. PubMed ID: 22689779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FALCON@home: a high-throughput protein structure prediction server based on remote homologue recognition.
    Wang C; Zhang H; Zheng WM; Xu D; Zhu J; Wang B; Ning K; Sun S; Li SC; Bu D
    Bioinformatics; 2016 Feb; 32(3):462-4. PubMed ID: 26454278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fold recognition by predicted alignment accuracy.
    Xu J
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(2):157-65. PubMed ID: 17044180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein threading using context-specific alignment potential.
    Ma J; Wang S; Zhao F; Xu J
    Bioinformatics; 2013 Jul; 29(13):i257-65. PubMed ID: 23812991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling.
    Meier A; Söding J
    PLoS Comput Biol; 2015 Oct; 11(10):e1004343. PubMed ID: 26496371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the alignment quality of consistency based aligners with an evaluation function using synonymous protein words.
    Lin HN; Notredame C; Chang JM; Sung TY; Hsu WL
    PLoS One; 2011; 6(12):e27872. PubMed ID: 22163274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking of TASSER_2.0: an improved protein structure prediction algorithm with more accurate predicted contact restraints.
    Lee SY; Skolnick J
    Biophys J; 2008 Aug; 95(4):1956-64. PubMed ID: 18487301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein structure prediction by threading. Why it works and why it does not.
    Mirny LA; Shakhnovich EI
    J Mol Biol; 1998 Oct; 283(2):507-26. PubMed ID: 9769221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NdPASA: a pairwise sequence alignment server for distantly related proteins.
    Li W; Wang J; Feng JA
    Bioinformatics; 2005 Oct; 21(19):3803-5. PubMed ID: 16105904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.