These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747 [TBL] [Abstract][Full Text] [Related]
3. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity. Vasquez Y; Escobar MC; Neculita CM; Arbeli Z; Roldan F Chemosphere; 2016 Jun; 153():244-53. PubMed ID: 27016821 [TBL] [Abstract][Full Text] [Related]
4. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage]. Su Y; Wang J; Peng SC; Yue ZB; Chen TH; Jin J Huan Jing Ke Xue; 2010 Aug; 31(8):1858-63. PubMed ID: 21090305 [TBL] [Abstract][Full Text] [Related]
5. Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis. Sun R; Li Y; Lin N; Ou C; Wang X; Zhang L; Jiang F Environ Int; 2020 Mar; 136():105457. PubMed ID: 31926438 [TBL] [Abstract][Full Text] [Related]
6. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction. Tabak HH; Govind R Biodegradation; 2003 Dec; 14(6):437-52. PubMed ID: 14669874 [TBL] [Abstract][Full Text] [Related]
7. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. Neculita CM; Zagury GJ; Bussière B J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207 [TBL] [Abstract][Full Text] [Related]
8. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage. Logan MV; Reardon KF; Figueroa LA; McLain JE; Ahmann DM Water Res; 2005 Nov; 39(18):4537-51. PubMed ID: 16213004 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico. Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977 [TBL] [Abstract][Full Text] [Related]
10. Electron donors for biological sulfate reduction. Liamleam W; Annachhatre AP Biotechnol Adv; 2007; 25(5):452-63. PubMed ID: 17572039 [TBL] [Abstract][Full Text] [Related]
11. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Jong T; Parry DL Water Res; 2006 Jul; 40(13):2561-71. PubMed ID: 16814360 [TBL] [Abstract][Full Text] [Related]
12. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Johnson DB; Hallberg KB Sci Total Environ; 2005 Feb; 338(1-2):81-93. PubMed ID: 15680629 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Utgikar VP; Harmon SM; Chaudhary N; Tabak HH; Govind R; Haines JR Environ Toxicol; 2002 Feb; 17(1):40-8. PubMed ID: 11847973 [TBL] [Abstract][Full Text] [Related]
14. Sulfate reduction at pH 5 in a high-rate membrane bioreactor: reactor performance and microbial community analyses. Bijmans MF; Dopson M; Peeters TW; Lens PN; Buisman CJ J Microbiol Biotechnol; 2009 Jul; 19(7):698-708. PubMed ID: 19652518 [TBL] [Abstract][Full Text] [Related]
15. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795 [TBL] [Abstract][Full Text] [Related]