These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24444831)

  • 1. Succinonitrile as a corrosion inhibitor of copper current collectors for overdischarge protection of lithium ion batteries.
    Kim YS; Lee SH; Son MY; Jung YM; Song HK; Lee H
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2039-43. PubMed ID: 24444831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accessing copper oxidation states of dissolved negative electrode current collectors in lithium ion batteries.
    Hanf L; Diehl M; Kemper LS; Winter M; Nowak S
    Electrophoresis; 2020 Oct; 41(18-19):1568-1575. PubMed ID: 32640093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Use of Succinonitrile as an Electrolyte Additive for Composite-Fiber Membranes in Lithium-Ion Batteries.
    Villarreal J; Orrostieta Chavez R; Chopade SA; Lodge TP; Alcoutlabi M
    Membranes (Basel); 2020 Mar; 10(3):. PubMed ID: 32192019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safety-Reinforced Succinonitrile-Based Electrolyte with Interfacial Stability for High-Performance Lithium Batteries.
    Zhang Q; Liu K; Ding F; Li W; Liu X; Zhang J
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29820-29828. PubMed ID: 28805049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of fluoroethylene carbonate effects on tin-based lithium-ion battery electrodes.
    Yang Z; Gewirth AA; Trahey L
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6557-66. PubMed ID: 25741901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive
    Gunnarsdóttir AB; Amanchukwu CV; Menkin S; Grey CP
    J Am Chem Soc; 2020 Dec; 142(49):20814-20827. PubMed ID: 33226793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Gel-Polymer Sn-C/LiMn0.5Fe0.5PO4 Battery Using a Fluorine-Free Salt.
    Di Lecce D; Fasciani C; Scrosati B; Hassoun J
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21198-207. PubMed ID: 26348604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motional Resistance Evaluation of the Quartz Crystal Microbalance to Study the Formation of a Passive Layer in the Interfacial Region of a Copper|Diluted Sulfuric Solution.
    Cuenca A; Agrisuelas J; Catalán R; García-Jareño JJ; Vicente F
    Langmuir; 2015 Sep; 31(35):9655-64. PubMed ID: 26287449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries.
    Ma T; Xu GL; Li Y; Wang L; He X; Zheng J; Liu J; Engelhard MH; Zapol P; Curtiss LA; Jorne J; Amine K; Chen Z
    J Phys Chem Lett; 2017 Mar; 8(5):1072-1077. PubMed ID: 28205444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Succinonitrile-Based Gel Polymer Electrolyte for Lithium-Ion Batteries Withstanding Mechanical Folding and High Temperature.
    Lv P; Li Y; Wu Y; Liu G; Liu H; Li S; Tang C; Mei J; Li Y
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25384-25392. PubMed ID: 29984993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries.
    Guo R; Lu L; Ouyang M; Feng X
    Sci Rep; 2016 Jul; 6():30248. PubMed ID: 27444934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Propylene Carbonate Content in CsPF₆-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries.
    Zheng J; Yan P; Cao R; Xiang H; Engelhard MH; Polzin BJ; Wang C; Zhang JG; Xu W
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5715-22. PubMed ID: 26862677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the Intrinsic Cycle Reversibility of a LiCoO
    Seong WM; Yoon K; Lee MH; Jung SK; Kang K
    Nano Lett; 2019 Jan; 19(1):29-37. PubMed ID: 30365316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine as a Novel Electrolyte Additive for High-Voltage Lithium-Ion Batteries.
    Lee H; Han T; Cho KY; Ryou MH; Lee YM
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21366-72. PubMed ID: 27509406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the interfacial properties of an electroplated Sn thin film electrode/electrolyte using in situ MFTIRS and EQCM.
    Li JT; Chen SR; Fan XY; Huang L; Sun SG
    Langmuir; 2007 Dec; 23(26):13174-80. PubMed ID: 18020462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trimethyl Borate as Film-Forming Electrolyte Additive To Improve High-Voltage Performances.
    Liu Q; Yang G; Liu S; Han M; Wang Z; Chen L
    ACS Appl Mater Interfaces; 2019 May; 11(19):17435-17443. PubMed ID: 31021075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A catalytic path for electrolyte reduction in lithium-ion cells revealed by in situ attenuated total reflection-Fourier transform infrared spectroscopy.
    Shi F; Ross PN; Zhao H; Liu G; Somorjai GA; Komvopoulos K
    J Am Chem Soc; 2015 Mar; 137(9):3181-4. PubMed ID: 25689135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilizing LiCoO
    Wu S; Lin Y; Xing L; Sun G; Zhou H; Xu K; Fan W; Yu L; Li W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17940-17951. PubMed ID: 30990302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.