BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 24444926)

  • 1. Feasibility of using hyperspectral imaging to predict moisture content of porcine meat during salting process.
    Liu D; Sun DW; Qu J; Zeng XA; Pu H; Ma J
    Food Chem; 2014; 152():197-204. PubMed ID: 24444926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and non-invasive quantification of intramuscular fat content of intact pork cuts.
    Huang H; Liu L; Ngadi MO; GariƩpy C
    Talanta; 2014 Feb; 119():385-95. PubMed ID: 24401429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parsimonious model development for real-time monitoring of moisture in red meat using hyperspectral imaging.
    Kamruzzaman M; Makino Y; Oshita S
    Food Chem; 2016 Apr; 196():1084-91. PubMed ID: 26593592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging.
    Barbin DF; ElMasry G; Sun DW; Allen P
    Food Chem; 2013 Jun; 138(2-3):1162-71. PubMed ID: 23411227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring microstructural changes and moisture distribution of dry-cured pork: a combined confocal laser scanning microscopy and hyperspectral imaging study.
    Tian XY; Aheto JH; Dai C; Ren Y; Bai JW
    J Sci Food Agric; 2021 May; 101(7):2727-2735. PubMed ID: 33124042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system.
    Wu D; Shi H; Wang S; He Y; Bao Y; Liu K
    Anal Chim Acta; 2012 May; 726():57-66. PubMed ID: 22541014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis.
    Kamruzzaman M; Sun DW; ElMasry G; Allen P
    Talanta; 2013 Jan; 103():130-6. PubMed ID: 23200368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of visible and near infrared hyperspectral imaging for non-invasively measuring distribution of water-holding capacity in salmon flesh.
    Wu D; Sun DW
    Talanta; 2013 Nov; 116():266-76. PubMed ID: 24148403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles.
    Ma J; Sun DW; Pu H
    Food Chem; 2016 Apr; 197(Pt A):848-54. PubMed ID: 26617026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of hyperspectral imaging for rapid prediction of hydroxyproline content in chicken meat.
    Xiong Z; Sun DW; Xie A; Han Z; Wang L
    Food Chem; 2015 May; 175():417-22. PubMed ID: 25577100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared hyperspectral imaging for detection and visualization of offal adulteration in ground pork.
    Jiang H; Ru Y; Chen Q; Wang J; Xu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119307. PubMed ID: 33348095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of metmyoglobin in cooked tan mutton using Vis/NIR hyperspectral imaging system.
    Yuan R; Liu G; He J; Ma C; Cheng L; Fan N; Ban J; Li Y; Sun Y
    J Food Sci; 2020 May; 85(5):1403-1410. PubMed ID: 32304238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging.
    Barbin DF; ElMasry G; Sun DW; Allen P
    Anal Chim Acta; 2012 Mar; 719():30-42. PubMed ID: 22340528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of spectra and texture data of hyperspectral imaging for prediction of pH in salted meat.
    Liu D; Pu H; Sun DW; Wang L; Zeng XA
    Food Chem; 2014 Oct; 160():330-7. PubMed ID: 24799246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential use of multispectral imaging technology to identify moisture content and water-holding capacity in cooked pork sausages.
    Ma F; Zhang B; Wang W; Li P; Niu X; Chen C; Zheng L
    J Sci Food Agric; 2018 Mar; 98(5):1832-1838. PubMed ID: 28872679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vis-NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying.
    Pu YY; Sun DW
    Food Chem; 2015 Dec; 188():271-8. PubMed ID: 26041192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat.
    Aheto JH; Huang X; Tian X; Ren Y; Ernest B; Alenyorege EA; Dai C; Hongyang T; Xiaorui Z; Wang P
    Anal Bioanal Chem; 2020 Feb; 412(5):1169-1179. PubMed ID: 31912184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on modeling method of total viable count of fresh pork meat based on hyperspectral imaging system].
    Wang W; Peng YK; Zhang XL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):411-5. PubMed ID: 20384135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on the Rapid Evaluation of Total Volatile Basic Nitrogen (TVB-N) of Mutton by Hyperspectral Imaging Technique].
    Zhu RG; Yao XD; Duan HW; Ma BX; Tang MX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):806-10. PubMed ID: 27400528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperspectral reflectance imaging technique for visualization of moisture distribution in cooked chicken breast.
    Kandpal LM; Lee H; Kim MS; Mo C; Cho BK
    Sensors (Basel); 2013 Sep; 13(10):13289-300. PubMed ID: 24084119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.