These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 24444972)
1. 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols as the marker compounds of Chinese dark teas formed in the post-fermentation process provide significant antioxidative activity. Wang W; Zhang L; Wang S; Shi S; Jiang Y; Li N; Tu P Food Chem; 2014; 152():539-45. PubMed ID: 24444972 [TBL] [Abstract][Full Text] [Related]
2. Metabolomics Investigation Reveals That 8-C N-Ethyl-2-pyrrolidinone-Substituted Flavan-3-ols Are Potential Marker Compounds of Stored White Teas. Dai W; Tan J; Lu M; Zhu Y; Li P; Peng Q; Guo L; Zhang Y; Xie D; Hu Z; Lin Z J Agric Food Chem; 2018 Jul; 66(27):7209-7218. PubMed ID: 29921123 [TBL] [Abstract][Full Text] [Related]
3. Nontargeted metabolomics predicts the storage duration of white teas with 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols as marker compounds. Xie D; Dai W; Lu M; Tan J; Zhang Y; Chen M; Lin Z Food Res Int; 2019 Nov; 125():108635. PubMed ID: 31554114 [TBL] [Abstract][Full Text] [Related]
4. C-8 N-Ethyl-2-pyrrolidinone-Substituted Flavan-3-ols from the Leaves of Camellia sinensis var. pubilimba. Meng XH; Zhu HT; Yan H; Wang D; Yang CR; Zhang YJ J Agric Food Chem; 2018 Jul; 66(27):7150-7155. PubMed ID: 29889511 [TBL] [Abstract][Full Text] [Related]
5. New phenylpropanoid-substituted flavan-3-ols from Pu-er ripe tea. Tao MK; Xu M; Zhu HT; Cheng RR; Wang D; Yang CR; Zhang YJ Nat Prod Commun; 2014 Aug; 9(8):1167-70. PubMed ID: 25233599 [TBL] [Abstract][Full Text] [Related]
6. Puerins A and B, two new 8-C substituted flavan-3-ols from Pu-er tea. Zhou ZH; Zhang YJ; Xu M; Yang CR J Agric Food Chem; 2005 Nov; 53(22):8614-7. PubMed ID: 16248561 [TBL] [Abstract][Full Text] [Related]
7. White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles. Unachukwu UJ; Ahmed S; Kavalier A; Lyles JT; Kennelly EJ J Food Sci; 2010 Aug; 75(6):C541-8. PubMed ID: 20722909 [TBL] [Abstract][Full Text] [Related]
8. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies. Lv HP; Zhang Y; Shi J; Lin Z Food Res Int; 2017 Oct; 100(Pt 3):486-493. PubMed ID: 28964372 [TBL] [Abstract][Full Text] [Related]
9. Fuzhuanins A and B: the B-ring fission lactones of flavan-3-ols from Fuzhuan brick-tea. Luo ZM; Du HX; Li LX; An MQ; Zhang ZZ; Wan XC; Bao GH; Zhang L; Ling TJ J Agric Food Chem; 2013 Jul; 61(28):6982-90. PubMed ID: 23837839 [TBL] [Abstract][Full Text] [Related]
10. On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea. Stewart AJ; Mullen W; Crozier A Mol Nutr Food Res; 2005 Jan; 49(1):52-60. PubMed ID: 15602765 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the chemical constituents of aged pu-erh tea, ripened pu-erh tea, and other teas using HPLC-DAD-ESI-MSn. Zhang L; Li N; Ma ZZ; Tu PF J Agric Food Chem; 2011 Aug; 59(16):8754-60. PubMed ID: 21793506 [TBL] [Abstract][Full Text] [Related]
12. Chemometrics-enhanced high performance liquid chromatography-diode array detection strategy for simultaneous determination of eight co-eluted compounds in ten kinds of Chinese teas using second-order calibration method based on alternating trilinear decomposition algorithm. Yin XL; Wu HL; Gu HW; Zhang XH; Sun YM; Hu Y; Liu L; Rong QM; Yu RQ J Chromatogr A; 2014 Oct; 1364():151-62. PubMed ID: 25223614 [TBL] [Abstract][Full Text] [Related]
13. Identification of novel homologous series of polyhydroxylated theasinensins and theanaphthoquinones in the SII fraction of black tea thearubigins using ESI/HPLC tandem mass spectrometry. Yassin GH; Koek JH; Jayaraman S; Kuhnert N J Agric Food Chem; 2014 Oct; 62(40):9848-59. PubMed ID: 25263270 [TBL] [Abstract][Full Text] [Related]
14. Application of metabolomics in the analysis of manufacturing type of pu-erh tea and composition changes with different postfermentation year. Ku KM; Kim J; Park HJ; Liu KH; Lee CH J Agric Food Chem; 2010 Jan; 58(1):345-52. PubMed ID: 19916505 [TBL] [Abstract][Full Text] [Related]
15. The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: a review. Malongane F; McGaw LJ; Mudau FN J Sci Food Agric; 2017 Nov; 97(14):4679-4689. PubMed ID: 28585285 [TBL] [Abstract][Full Text] [Related]
16. Untargeted and targeted metabolomics reveal the chemical characteristic of pu-erh tea (Camellia assamica) during pile-fermentation. Long P; Wen M; Granato D; Zhou J; Wu Y; Hou Y; Zhang L Food Chem; 2020 May; 311():125895. PubMed ID: 31780220 [TBL] [Abstract][Full Text] [Related]
17. LC-MS-Based Metabolomics Reveals the Chemical Changes of Polyphenols during High-Temperature Roasting of Large-Leaf Yellow Tea. Zhou J; Wu Y; Long P; Ho CT; Wang Y; Kan Z; Cao L; Zhang L; Wan X J Agric Food Chem; 2019 May; 67(19):5405-5412. PubMed ID: 30485095 [TBL] [Abstract][Full Text] [Related]
18. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. Lin YS; Tsai YJ; Tsay JS; Lin JK J Agric Food Chem; 2003 Mar; 51(7):1864-73. PubMed ID: 12643643 [TBL] [Abstract][Full Text] [Related]
19. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity. Seeram NP; Henning SM; Niu Y; Lee R; Scheuller HS; Heber D J Agric Food Chem; 2006 Mar; 54(5):1599-603. PubMed ID: 16506807 [TBL] [Abstract][Full Text] [Related]
20. Discrimination of Chinese teas with different fermentation degrees by stepwise linear discriminant analysis (S-LDA) of the chemical compounds. Wu QJ; Dong QH; Sun WJ; Huang Y; Wang QQ; Zhou WL J Agric Food Chem; 2014 Sep; 62(38):9336-44. PubMed ID: 25211192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]