These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
48. The biosynthesis of radioactive fatty acids and cholesterol. BRADY RO; GURIN S J Biol Chem; 1950 Oct; 186(2):461-9. PubMed ID: 14794641 [No Abstract] [Full Text] [Related]
49. CD36, a scavenger receptor implicated in atherosclerosis. Park YM Exp Mol Med; 2014 Jun; 46(6):e99. PubMed ID: 24903227 [TBL] [Abstract][Full Text] [Related]
50. Wnt1 positively regulates CD36 expression via TCF4 and PPAR-γ in macrophages. Wang S; Sun Z; Zhang X; Li Z; Wu M; Zhao W; Wang H; Chen T; Yan H; Zhu J Cell Physiol Biochem; 2015; 35(4):1289-302. PubMed ID: 25721714 [TBL] [Abstract][Full Text] [Related]
51. The Blood Plasma Lipidomic Profile in Atherosclerosis of the Brachiocephalic Arteries. Lomonosova A; Gognieva D; Suvorov A; Silantyev A; Abasheva A; Vasina Y; Abdullaev M; Nartova A; Eroshchenko N; Kazakova V; Komarov R; Dzyundzya A; Danilova E; Shchekochikhin D; Kopylov P Biomedicines; 2024 Jun; 12(6):. PubMed ID: 38927486 [TBL] [Abstract][Full Text] [Related]
52. Roles of lncRNAs in NF-κB-Mediated Macrophage Inflammation and Their Implications in the Pathogenesis of Human Diseases. Shin JJ; Park J; Shin HS; Arab I; Suk K; Lee WH Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473915 [TBL] [Abstract][Full Text] [Related]
53. Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective. Yu W; Ilyas I; Hu X; Xu S; Yu H Front Immunol; 2022; 13():1072007. PubMed ID: 36618414 [TBL] [Abstract][Full Text] [Related]
54. Working from home during COVID-19 in a Danish hospital research setting: experiences of researchers and healthcare providers, explored by Group Concept Mapping. Specht IO; Winckler K; Christensen R; Bomhoff C; Raffing R; Wæhrens EE BMJ Open; 2022 Aug; 12(8):e063279. PubMed ID: 35922108 [TBL] [Abstract][Full Text] [Related]
55. Soybean Oil Modulates the Gut Microbiota Associated with Atherogenic Biomarkers. Korach-Rechtman H; Rom O; Mazouz L; Freilich S; Jeries H; Hayek T; Aviram M; Kashi Y Microorganisms; 2020 Mar; 8(4):. PubMed ID: 32235412 [TBL] [Abstract][Full Text] [Related]
56. Sodium Orthovanadate Changes Fatty Acid Composition and Increased Expression of Stearoyl-Coenzyme A Desaturase in THP-1 Macrophages. Korbecki J; Gutowska I; Wiercioch M; Łukomska A; Tarnowski M; Drozd A; Barczak K; Chlubek D; Baranowska-Bosiacka I Biol Trace Elem Res; 2020 Jan; 193(1):152-161. PubMed ID: 30927246 [TBL] [Abstract][Full Text] [Related]
57. Lipid Uptake by Alveolar Macrophages Drives Fibrotic Responses to Silica Dust. Hou X; Summer R; Chen Z; Tian Y; Ma J; Cui J; Hao X; Guo L; Xu H; Wang H; Liu H Sci Rep; 2019 Jan; 9(1):399. PubMed ID: 30674959 [TBL] [Abstract][Full Text] [Related]
58. C1q/TNF-Related Protein 9 Inhibits THP-1 Macrophage Foam Cell Formation by Enhancing Autophagy. Zhang L; Liu Q; Zhang H; Wang XD; Chen SY; Yang Y; Lv H; Hou JB; Yu B J Cardiovasc Pharmacol; 2018 Oct; 72(4):167-175. PubMed ID: 29979351 [TBL] [Abstract][Full Text] [Related]
59. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes. Rosenblat M; Rom O; Volkova N; Aviram M Lipids; 2016 Aug; 51(8):941-53. PubMed ID: 27344666 [TBL] [Abstract][Full Text] [Related]
60. Loss of Fatty Acid Binding Protein 4/aP2 Reduces Macrophage Inflammation Through Activation of SIRT3. Xu H; Hertzel AV; Steen KA; Bernlohr DA Mol Endocrinol; 2016 Mar; 30(3):325-34. PubMed ID: 26789108 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]