These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 24445039)

  • 1. Chronic supplementation of proanthocyanidins reduces postprandial lipemia and liver miR-33a and miR-122 levels in a dose-dependent manner in healthy rats.
    Baselga-Escudero L; Blade C; Ribas-Latre A; Casanova E; Salvadó MJ; Arola L; Arola-Arnal A
    J Nutr Biochem; 2014 Feb; 25(2):151-6. PubMed ID: 24445039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term supplementation with a low dose of proanthocyanidins normalized liver miR-33a and miR-122 levels in high-fat diet-induced obese rats.
    Baselga-Escudero L; Pascual-Serrano A; Ribas-Latre A; Casanova E; Salvadó MJ; Arola L; Arola-Arnal A; Bladé C
    Nutr Res; 2015 Apr; 35(4):337-45. PubMed ID: 25769350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic administration of proanthocyanidins or docosahexaenoic acid reverses the increase of miR-33a and miR-122 in dyslipidemic obese rats.
    Baselga-Escudero L; Arola-Arnal A; Pascual-Serrano A; Ribas-Latre A; Casanova E; Salvadó MJ; Arola L; Blade C
    PLoS One; 2013; 8(7):e69817. PubMed ID: 23922812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lipid-lowering effect of dietary proanthocyanidins in rats involves both chylomicron-rich and VLDL-rich fractions.
    Quesada H; Díaz S; Pajuelo D; Fernández-Iglesias A; Garcia-Vallvé S; Pujadas G; Salvadó MJ; Arola L; Bladé C
    Br J Nutr; 2012 Jul; 108(2):208-17. PubMed ID: 22011563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic consumption of dietary proanthocyanidins modulates peripheral clocks in healthy and obese rats.
    Ribas-Latre A; Baselga-Escudero L; Casanova E; Arola-Arnal A; Salvadó MJ; Arola L; Bladé C
    J Nutr Biochem; 2015 Feb; 26(2):112-9. PubMed ID: 25459887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serum metabolites of proanthocyanidin-administered rats decrease lipid synthesis in HepG2 cells.
    Guerrero L; Margalef M; Pons Z; Quiñones M; Arola L; Arola-Arnal A; Muguerza B
    J Nutr Biochem; 2013 Dec; 24(12):2092-9. PubMed ID: 24231101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of grape seed proanthocyanidin extract and docosahexaenoic acid-rich oil increases the hepatic detoxification by GST mediated GSH conjugation in a lipidic postprandial state.
    Fernández-Iglesias A; Quesada H; Díaz S; Pajuelo D; Bladé C; Arola L; Salvadó MJ; Mulero M
    Food Chem; 2014 Dec; 165():14-20. PubMed ID: 25038643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omega-3 polyunsaturated fatty acids and proanthocyanidins improve postprandial metabolic flexibility in rat.
    Casanova E; Baselga-Escudero L; Ribas-Latre A; Arola-Arnal A; Bladé C; Arola L; Salvadó MJ
    Biofactors; 2014; 40(1):146-56. PubMed ID: 23983179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats.
    Baselga-Escudero L; Bladé C; Ribas-Latre A; Casanova E; Salvadó MJ; Arola L; Arola-Arnal A
    Mol Nutr Food Res; 2012 Nov; 56(11):1636-46. PubMed ID: 22965541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A specific dose of grape seed-derived proanthocyanidins to inhibit body weight gain limits food intake and increases energy expenditure in rats.
    Serrano J; Casanova-Martí À; Gual A; Pérez-Vendrell AM; Blay MT; Terra X; Ardévol A; Pinent M
    Eur J Nutr; 2017 Jun; 56(4):1629-1636. PubMed ID: 27039093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining Conditions for Optimal Inhibition of Food Intake in Rats by a Grape-Seed Derived Proanthocyanidin Extract.
    Serrano J; Casanova-Martí À; Blay M; Terra X; Ardévol A; Pinent M
    Nutrients; 2016 Oct; 8(10):. PubMed ID: 27775601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of circulating miR-122, miR-30c and miR-33a levels and their association with lipids, lipoproteins in postprandial lipemia.
    Yaman SO; Orem A; Yucesan FB; Kural BV; Orem C
    Life Sci; 2021 Jan; 264():118585. PubMed ID: 33058914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Procyanidins modulate microRNA expression in pancreatic islets.
    Castell-Auví A; Cedó L; Movassat J; Portha B; Sánchez-Cabo F; Pallarès V; Blay M; Pinent M; Ardévol A
    J Agric Food Chem; 2013 Jan; 61(2):355-63. PubMed ID: 23215023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic dietary supplementation of proanthocyanidins corrects the mitochondrial dysfunction of brown adipose tissue caused by diet-induced obesity in Wistar rats.
    Pajuelo D; Quesada H; Díaz S; Fernández-Iglesias A; Arola-Arnal A; Bladé C; Salvadó J; Arola L
    Br J Nutr; 2012 Jan; 107(2):170-8. PubMed ID: 21733324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver.
    Quesada H; del Bas JM; Pajuelo D; Díaz S; Fernandez-Larrea J; Pinent M; Arola L; Salvadó MJ; Bladé C
    Int J Obes (Lond); 2009 Sep; 33(9):1007-12. PubMed ID: 19581912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grape Seed Proanthocyanidins Modulate the Hepatic Molecular Clock via MicroRNAs.
    Manocchio F; Soliz-Rueda JR; Ribas-Latre A; Bravo FI; Arola-Arnal A; Suarez M; Muguerza B
    Mol Nutr Food Res; 2022 Dec; 66(23):e2200443. PubMed ID: 36189890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of mitochondrial function in muscle of genetically obese rats after chronic supplementation with proanthocyanidins.
    Pajuelo D; Fernández-Iglesias A; Díaz S; Quesada H; Arola-Arnal A; Bladé C; Salvadó J; Arola L
    J Agric Food Chem; 2011 Aug; 59(15):8491-8. PubMed ID: 21726097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intake of grape procyanidins during gestation and lactation impairs reverse cholesterol transport and increases atherogenic risk indexes in adult offspring.
    Del Bas JM; Crescenti A; Arola-Arnal A; Oms-Oliu G; Arola L; Caimari A
    J Nutr Biochem; 2015 Dec; 26(12):1670-7. PubMed ID: 26365577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary proanthocyanidins modulate BMAL1 acetylation, Nampt expression and NAD levels in rat liver.
    Ribas-Latre A; Baselga-Escudero L; Casanova E; Arola-Arnal A; Salvadó MJ; Bladé C; Arola L
    Sci Rep; 2015 Jun; 5():10954. PubMed ID: 26051626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proanthocyanidin exposure to B6C3F1 mice significantly attenuates dimethylnitrosamine-induced liver tumor induction and mortality by differentially modulating programmed and unprogrammed cell deaths.
    Ray SD; Parikh H; Bagchi D
    Mutat Res; 2005 Nov; 579(1-2):81-106. PubMed ID: 16197968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.